

6 af 7

 Disposition for CPP1 fredag den 8/9

variable - simple typer i C++ versus fx. java
fx er int er på 16 bit i C++ men 32 i java
initiering int i(10) - int i = 10 også gyldig.

	75 // decimal
0113 // octal
0x4b // hexadecimal

	75 // int
75u // unsigned int
75l // long
75ul // unsigned long

Defined constants (#define)

You can define your own names for constants that you use very often without having to resort to memory-consuming variables, simply by using the #define preprocessor directive. Its format is:

#define identifier value

For example:

	#define PI 3.14159265
#define NEWLINE '\n'

This defines two new constants: PI and NEWLINE. Once they are defined, you can use them in the rest of the code as if they were any other regular constant, for example:

Declared constants (const)

With the const prefix you can declare constants with a specific type in the same way as you would do with a variable:

	const int pathwidth = 100;

const char tabulator = '\t';

const zipcode = 12440;

In case that no type is explicitly specified (as in the last example) the compiler assumes that it is of type int.

Comma operator (,)

The comma operator (,) is used to separate two or more expressions that are included where only one expression is expected. When the set of expressions has to be evaluated for a value, only the rightmost expression is considered.

For example, the following code:

	a = (b=3, b+2);

Would first assign the value 3 to b, and then assign b+2 to variable a. So, at the end, variable a would contain the value 5 while variable b would contain value 3.

Bitwise Operators (&, |, ^, ~, <<, >>)

	operator
	asm equivalent
	description

	&
	AND
	Bitwise AND

	|
	OR
	Bitwise Inclusive OR

	^
	XOR
	Bitwise Exclusive OR

	~
	NOT
	Unary complement (bit inversion)

	<<
	SHL
	Shift Left

	>>
	SHR
	Shift Right

Explicit type casting operator

Type casting operators allow you to convert a datum of a given type to another. There are several ways to do this in C++. The simplest one, which has been inherited from the C language, is to precede the expression to be converted by the new type enclosed between parentheses (()):

	int i;

float f = 3.14;

i = (int) f;

The previous code converts the float number 3.14 to an integer value (3), the remainder is lost. Here, the typecasting operator was (int). Another way to do the same thing in C++ is using the functional notation: preceding the expression to be converted by the type and enclosing the expression between parentheses:

	i = int (f);

Both ways of type casting are valid in C++.

sizeof()

This operator accepts one parameter, which can be either a type or a variable itself and returns the size in bytes of that type or object:

	a = sizeof (char);

This will assign the value 1 to a because char is a one-byte long type.
The value returned by sizeof is a constant, so it is always determined before program execution.
Præcendense-rækkefølge
	Level
	Operator
	Description
	Grouping

	1
	::
	scope
	Left-to-right

	2
	() [] . -> ++ -- dynamic_cast static_cast reinterpret_cast const_cast typeid
	postfix
	Left-to-right

	3
	++ -- ~ ! sizeof new delete
	unary (prefix)
	Right-to-left

	
	* &
	indirection and reference (pointers)
	

	
	+ -
	unary sign operator
	

	4
	(type)
	type casting
	Right-to-left

	5
	.* ->*
	pointer-to-member
	Left-to-right

	6
	* / %
	multiplicative
	Left-to-right

	7
	+ -
	additive
	Left-to-right

	8
	<< >>
	shift
	Left-to-right

	9
	< > <= >=
	relational
	Left-to-right

	10
	== !=
	equality
	Left-to-right

	11
	&
	bitwise AND
	Left-to-right

	12
	^
	bitwise XOR
	Left-to-right

	13
	|
	bitwise OR
	Left-to-right

	14
	&&
	logical AND
	Left-to-right

	15
	||
	logical OR
	Left-to-right

	16
	?:
	conditional
	Right-to-left

	17
	= *= /= %= += -= >>= <<= &= ^= !=
	assignment
	Right-to-left

	18
	,
	comma
	Left-to-right

 Input/output
	// stringstreams
#include <iostream>
#include <string>
#include <sstream>
using namespace std;

int main ()

{

 string mystr;

 float price=0;

 int quantity=0;

 cout << "Enter price: ";

 getline (cin,mystr);

 stringstream(mystr) >> price;

 cout << "Enter quantity: ";

 getline (cin,mystr);

 stringstream(mystr) >> quantity;

 cout << "Total price: " << price*quantity << endl;

 return 0;

}

Kontrolstrukturer
Som java:

if, if-else, if- else if -else, switch

while, do ... while, for

Funktioner
Call by value og by reference

void f1 (int v1, int& v2)

Deault parameter
void f2 (int a, int b=2)

Overload af metoder
int f (int a, int b)

float f (int a, float b)

inline functions.

Array
	int billy [5] = { 16, 2, 77, 40, 12071 };
int billy [] = { 16, 2, 77, 40, 12071 };

multidim array
int jimmy [3][5];

// arrays as parameters
#include <iostream>
using namespace std;

void printarray (int arg[], int length) {

 for (int n=0; n<length; n++)

 cout << arg[n] << " ";

 cout << "\n";

}

int main ()

{

 int firstarray[] = {5, 10, 15};

 int secondarray[] = {2, 4, 6, 8, 10};

 printarray (firstarray,3);

 printarray (secondarray,5);

 return 0;

}

In a function declaration it is also possible to include multidimensional arrays. The format for a tridimensional array parameter is:

	base_type[][depth][depth]

for example, a function with a multidimensional array as argument could be:

	void procedure (int myarray[][3][4])

string versus char sequense

Initialization of null-terminated character sequences

Because arrays of characters are ordinary arrays they follow all their same rules. For example, if we want to initialize an array of characters with some predetermined sequence of characters we can do it just like any other array:

char myword[] = { 'H', 'e', 'l', 'l', 'o', '\0' };

string mystring;

char myntcs[]="some text";

mystring = myntcs;

Adresserigsmodel, array, pointere og referencer
int tab1[] versus int* tab2

*p++ svarer til *(p++) bemærk virkemåde af p++ er ikke en byte-adresse frem men eet element.....
string……
	string mystring;

char myntcs[]="some text";

mystring = myntcs;

Dynamisk memory

Notice how the value within brackets in the new statement is a variable value entered by the user (i), not a constant value:

p= new (nothrow) int[i];

Operators new and delete are exclusive of C++. They are not available in the C language. But using pure C language, dynamic memory can also be used through the functions malloc, calloc, realloc and free, defined in the <cstdlib> header file, and since C++ is a superset of C, these functions are also available to C++ programmers.

Next you have a summary on how can you read some pointer and class operators (*, &, ., ->, []) that appear in the previous example:

expression

can be read as

*x

pointed by x

&x

address of x

x.y

member y of object x

x->y

member y of object pointed by x

(*x).y

member y of object pointed by x (equivalent to the previous one)

x[0]

first object pointed by x

x[1]

second object pointed by x

x[n]

(n+1)th object pointed by x

Klasser
All is very similar to the declaration on data structures, except that we can now include also functions and members, but also this new thing called access specifier. An access specifier is one of the following three keywords: private, public or protected. These specifiers modify the access rights that the members following them acquire:

· private members of a class are accessible only from within other members of the same class or from their friends.

· protected members are accessible from members of their same class and from their friends, but also from members of their derived classes.

· Finally, public members are accessible from anywhere where the object is visible.

By default, all members of a class declared with the class keyword have private access for all its members. Therefore, any member that is declared before one other class specifier automatically has private access. For example:

class CRectangle {

 int x, y;

 public:

 void set_values (int,int);

 int area (void);

 } rect;

 Declaration versus definition/implementering
- h-file og cpp-file
Trick for at undgå fejl ved flere gange include

/*

 * myheaderfile.h

 */

#ifndef ___MYHEADERFILE_H__

#define ___MYHEADERFILE_H__

// her indsættes declarationer

// inden for precompiler direktivet

// herved vil man undgå "dobbelt-declaration"

// ved flere includes af headerfilen

#endif

Bjørk Boye Busch / 07-09-2006 21:47

