Compiler Writing Tools Using C#

Compiler Writing Tools using C#

M K Crowe

Version 4.7k January 2008
Abstract

This document presents compiler writing tools in the tradition of lex and yacc, but using C# as an implementation language. The tools are written using object-oriented techniques that are natural to C# and are provided in source form to assist an understanding of the standard algorithms used.

Full user documentation and a number of examples are provided, making this document suitable for regular use by compiler writers. However, because it is intended for use in a university course, speed has always been sacrificed for readability in any case of conflict. The tools perform well enough to develop command-line compilers, but are not recommended in other situations such as just-in-time or incremental compilation.

These notes are designed to be used in conjunction with Andrew W. Appel, Modern Compiler Implementation in Java, Cambridge, 2nd edition, 2002 (£32.95). Many of the example grammars are taken from this book.
The toolset is based on an earlier one using C++ and first published in August 1995. This version is designed to be thread-safe and supports use of several languages concurrently.
About the author

Prof. M. K. Crowe is at the University of Paisley, UK. He can be contacted at malcolm.crowe@paisley.ac.uk, telephone +44 141 848 3300, fax +44 141 848 3542. He asserts his moral rights in respect of this document and the related source code. Suitably attributed, it can be reused or copied. He disclaims all liability for any loss or damage caused through use of these tools. He welcomes comments or suggestions for improvement to the text or the tools. The latest version of the tools can be found at http://cis.paisley.ac.uk/crow-ci0/ .

About this version
From version 4.0 the %parser directive in the parser script declares the name of the lexer file to use (with or without the .cs extension). The default names tokens and syntax are no longer used for output files, but continue to be used for the generated classes.

When lg prepares a file the full name of the source file is used as the base name of the output file, so that something.lexer generates something.lexer.cs, except that the .txt extension if present is stripped off, so that if the source file is of form something.lexer.txt , the output file is called something.lexer.cs. The output file contains classes called by default tokens and yytokens. These class names can be overridden in the %lexer directive. tokens is a subclass of Lexer, and yytokens is a subclass of YyLexer. new tokens () is equivalent to new tokens (new yytokens()) , and you can have several instances of a Lexer subclass that share the same instance of yytokens.

Similarly, when pg prepares a file the full name of the source file is used as the base name of the output file, so that something.parser generates something.parser.cs, except that the .txt extension if present is stripped off, so that if the source file is of form something.parser.txt , the output file is called something.parser.cs. The output file contains classes called by default syntax : Parser and yysyntax : YyParser . These class names can be overridden in the %parser directive. new syntax() is equivalent to new syntax (new yysyntax()) , and you can have several instances of syntax that shares the same yysyntax instance.

From version 4.1 the parser generator uses DeRemer and Penello’s LALR(1) algorithms by default. In version 4.2 the ParsingInfo for YyParser and Literals are separated. In version 4.3 there is some simple support for printing the concrete syntax tree resulting from the parse. In version 4.3c, and located in the fsharp folder, there is a sample from Don Syme of Microsoft Research that shows interoperability with the F# language. From version 4.4 there are changes to improve compatibility with the .NET Compact Framework, and a “runtime” version of the Tools.dll which has the remarkably small size of 48KB.

From version 4.5a the tools are also tested under Mono. However, the command line instructions in this booklet continue to be for .NET under Windows. Mono users will have no difficulty in adapting these: there are example Mono shell scripts in the distribution. From version 4.7 there is new machinery for reserved words collections.

1Abstract

1About the author

1About this version

4Chapter 1: Introduction

41.1 Example 1-1

51.2 The Hello World program

61.3 Classes and Objects

71.5 Interfaces

71.6 Exceptions

9Part 1: Using LexerGenerator and ParserGenerator to write compilers

10Chapter 2: Using LexerGenerator

102.1 Regular Expressions

112.2 The script for a Lexer

132.3 Using the Lexer

15Chapter 3: Using ParserGenerator

153.1 Grammars

153.2 The script for a Parser

20Chapter 4. Abstract Syntax

204.1 The $1 notation

214.2 A more modern notation

244.3 Abstract and Concrete Syntax

254.4 Later stages of the compiler

26Part 2: The output files and how they work

27Chapter 5. The Lexer class

275.1 Examining the LexerGenerator output file

285.2 The DFA structure

295.3 The Matching algorithm

305.4 The Actions mechanism

315.5 Serialisation

325.6 The Lexer class

345.7 Charset

36Chapter 6: The Parser class

366.1 Grammar preliminaries

366.2 LALR Parsing

376.3 The syntax tree

376.3 The Parse function

386.4 Actions in productions

386.5 Error recovery

396.6 Other support in the Parser class

416.7 The output file from pg

43Part 3: How the Tools process their scripts

44Chapter 7: How LexerGenerator Works

447.1 The Regular Expression class Regex

457.2 The constructor Regex(.., string str)

467.3 A non-deterministic Match algorithm for Regex

487.4 NFA recognisers

487.5 The Nfa class

497.6 Building the NFA

517.7 Reading the LexerGenerator script

537.8 From NFA to DFA

547.9 Terminal states in the DFA

557.10 Serialisation of the Lexer

57Chapter 8: How ParserGenerator works

578.1 Parse Tables

588.2 Handling Actions

598.3 Implementing the parsing table

608.4 A grammar for ParserGenerator scripts

608.5 Semantics of YyParser in ParserGenerator

608.6 The LexerGenerator script for ParserGenerator

618.7 Reading the ParserGenerator script

638.8 Constructing the LR(0) Parsing Table

638.9 FIRST

658.10 FOLLOW

668.11 Closure

668.12 AddEntries

678.13 LALR Generation

698.14 Graph algorithms for LALR computation

718.15 LALR Implementation

728.16 Handling precedence

738.17 Parse table construction: concluding steps

748.18 Serialisation of the Parser

76Appendix A: The syntax of LexerGenerator scripts

76A1. Regular Expressions

76A2. Lexical elements of the LexerGenerator script

76A3. Syntax elements of the LexerGenerator script

78A4. Conflicts and Precedence

79Appendix B: The syntax of ParserGenerator scripts

79B1. Lexical elements of the ParserGenerator script

79B2. Syntax elements of the ParserGenerator script

81B3. Conflicts and Precedence

83Appendix C. The Lexer class API

83C1. The <tokens> class

83C2. The Lexer class

84C3. The yy<tokens> class

84C4. The YyLexer class

84C5. The CsReader class

84C6. The TOKEN class

85C7. The CSToolsException class

85C8. The ErrorHandler class

85C9. The SourceLineInfo class

86Appendix D The Parser API

86D1. The <syntax> class

86D2. The Parser class

86D3. The yy<syntax> class

87D4. The SYMBOL class

87D5. The error class

88Appendix E: Exceptions

Chapter 1: Introduction

There can be few more famous compiler-writing tools than lex and yacc, which made their first appearance in the earliest days of the Unix operating system. They were included both as examples to demonstrate the power of Unix and the C language, and to help to implement many of the tools in the Unix environment, such as make and the desk calculators dc and bc in addition to the original set of languages (C, Fortran, Ratfor).

These tools have naturally followed C and the Unix run-time library to other environments, so that today there are many versions of lex and yacc available under many names (e.g. flex, bison). Some of these versions have been completely rewritten as shareware or freeware, but all seem to retain the rather basic approach to programming in C that is a consequence of the early origins of these tools. As a result, the implementation of the tools themselves is rather impenetrable, and the coding techniques that users of these tools have to use also follow the same primitive pattern, characterised by dozens of manifest integer constants and switch statements.

Rather than port such difficult code to C++ or C#, the approach adopted here has been to redesign them. The tools are renamed LexerGenerator and ParserGenerator to avoid confusion with their predecessors. Their implementation is presented here for the version of the Windows operating system currently described by Microsoft as the .NET plaform.

The approach that has been taken to the compiler writing tools is to leave untouched the core notations used by lex and yacc, of, respectively, regular expressions to define lexical elements, and BNF-style productions for the syntax, of the proposed compiler’s source language. To retain some further compatibility with lex and yacc, both of these specifications can contain actions coded in C#. For compatibility purposes, it is still possible to write these actions in the lex and yacc form, and this still results in the generation of some ugly code. In this version, however, the principal way to implement the other stages of compilation is to define a set (or hierarchy) of C# classes for the different symbols in the language being compiled, and the different nodes in the tree structures used in the internal working of the compiler being written. The resulting code is much more elegant and easier to maintain, though this is of course a matter of opinion: Appel seems to have come to the opposite view after some experiments.

It seems natural to use the name of the language symbol (e.g. Expression) for the corresponding C# classes, whereas other conventions use all lower case letters or have all class names begin with the letter C. For reasons that may become apparent later on, it is also convenient to make all parts of these classes public, though this is rather tedious in C#.

Appendices provide the syntax for the input for LexerGenerator and ParserGenerator.

C# is quite a good object-oriented language, and is very similar in many ways to Java. It is currently provided as part of Microsoft’s .NET (dot-net) Beta 1, formerly called NGWS (Next Generation Windows Services) SDK, which is available for free download from Microsoft’s MSDN web site. Visual Studio .NET is also available in Beta, but you don’t actually need it. The C# compiler is called csc.exe, and the C# source files can be developed using any text editor such as Notepad.

1.1 Example 1-1

As is traditional, we begin with the Hello World program.

1. Create a new text file. It must have the .cs extension, but otherwise you can call it anything you like. I suggest hello.cs:

using System;

public class HelloWorld {

public static void Main(string[] args) {

Console.WriteLine("Hello World");

}

}

2. Open a Command prompt window and change to the folder containing this file. Compile it with the command

csc hello.cs

The file should compile with no errors. Your new folder now has a new file: hello.exe.

4. Run the program using the command

hello

The program should print Hello World.

1.2 The Hello World program

This little program already allows us to introduce a number of aspects of the C# language. C# source files contain almost nothing apart from class declarations. A class is like a C++ class in containing data and method members (which can be public, private, or protected), however there are already some differences that you can see here:

· You can only declare classes and their contents, so there is no such thing as an external function: the main() function needs to be inside a class and declared public and static. There is no such thing as a global variable either, but classes can have public static member variables. If you wanted global variables you can simply put them in the same class as main(), e.g.

public class Main {

public static int x;

public static void Main(string[] args) { . . .

· Directives such as public need to be given for each member (in C++ you write public: to introduce a group of public members). There is also a default kind of access (called "friendly") which is neither public, private or protected, which means the member is accessible to other classes in the package (here the same as the source file).

· There is a built-in string class, which is an alias for System.String. You can also use character arrays if you want (e.g. char buf[80];), but String is not the same as char[] and the parameter to main uses Strings. There is also a built in standard type int. Unlike Java, there is no separate Integer class, and int is a kind of object. There are 8 standard types, object, string, char, int, long, float, double, and bool. Everything can be regarded as a kind of object. Objects are used for dynamic data, as we will see (you can't allocate memory any other way).

· You don't need a semicolon after a class declaration.

· There is no equivalent to header files (in C/C++ we would have had to #include <stdio.h> or something). If you refer to a class, the compiler will look for it in the current compilation and the libraries you refer to, so here we can refer immediately to Console, which is C#'s version of standard input/output. Because we have said using System, we don’t need to give its full name, System.Console. In C# classes, you can't simply give a function header: if you declare a method, you must give the body immediately, as here. The order of declaration is not important: you can call a method or use a class from later on in the file. If you have more than one source file, you compile all the files at the same time with a single command line.

· A C# executable can only execute a class that has a public static main member defined as here. As in C++, the static keyword means that the method does not need an object to start from: it belongs to the class. The return type must be specified as void and the parameter must be specified as string[] . (If more than one class in the source files has such a main function, you need to tell csc which to use for the executable.)

· System is the name of a public class that has many public members. (In C++ to refer to a static member of a class you use the :: notation: C# simply uses a dot.)

· Console.WriteLine is a static method of the Console class that allows you to send data to any output stream. It is implemented as Console.Out.WriteLine. There is a WriteLine method available in the TextWriter class, and Out is a static member of Console that is a TextWriter. Think of a method as a message being sent to an object. Methods are functions declared inside classes. WriteLine provides for formatting of objects: if x is an int and y is a string we can write

Console.WriteLine("{0}: {1}", x, y);

Needless to say there are lots of formatting options you can use inside the curly brackets: 0 says to use the first object supplied, 1 the second and so on (up to a maximum of 3). You can use Console.Write or String.Format if things are more complicated. You will probably guess that the above line of code is implemented as

Console.WriteLine(String.Format(("{0}: {1}", x, y));

You can also concatenate strings using + .

1.3 Classes and Objects

If all your classes only have static members, then you can't get very far. Classes with at least some non-static members are the equivalent of structs (or records) in C#. If you would have had a Person struct in C with a name and an age (say), in C# you would have a Person class:

public class Person

{

public string name;

public int age;

}

Where you would have declared a variable in C/C++/Ada/Pascal to be a Person (e.g. Person me;) in C# this declaration is like a pointer initialised to null. To allocate space for a new object, you must use the new operator: Person me = new Person(); . (People often say Java or C# hasn't got pointers: in reality they have almost nothing else! Even string is a reference.) There is no need to destroy objects created with new: C# will garbage-collect them when they are no longer needed.

Each new Person then has its own idea of name and age, whereas static members (mentioned above) belong to the class itself rather than any individual member.

Functions declared inside a class (unless declared static) are methods associated with objects of the class, and can be used to manipulate objects of the class. For example, if we want to be able to use the standard println() method on an object of type Person, we can provide a typecasting method that converts a Person to a string. If we declare it implicit then C# will do the typecast for us automatically:

public class Person {

public string name;

public int age;

public static implicit operator string(Person p) {

return p.name + "(" + p.age + ")";

}

}

Then we could test this class using a public static Main such as

public static void Main(string[] args) {

Person me = new Person();

me.name = args[0];

me.age = Int32.Parse(args[1]);

Console.WriteLine(me);

}

You can declare this in the Person class if you like, or in some other public class. Note that args start at 0, unlike the convention in C/C++ which was inherited from Unix.

When we create a new Person, the member variables will be set to their default values (null). We can supply initialisers for the variables, and one or more constructor methods to save time here and allow us to supply parameters that can be used for initialising the object (or for some other side effects). Constructors have no return type, and have the same name as the class:

Person(string nm, int age) { name = nm; this.age = age; }

The keyword this can be used in methods to refer to the object itself, e.g. as here to access the member variable age hidden by the parameter of the same name.

If we want a special kind of Person later, we can declare a class that extends Person. This is Java's notion of inheritance:

public class Employee : Person { . . .

Employee will inherit the member variables and methods of Person. We can add new members, and override (redeclare) any methods that we want to behave differently for Persons that are Employees (if you know C++, you need to be told that in C# all methods are virtual). Inside an Employee method, the keyword base can be used to refer to the Person class. A constructor for Employee can use the constructor for Person:

Employee(String n, int a, Job j) : base(n,a) { . . .}

This mechanism is called inheritance: anywhere a Person is specified, an Employee can be used, but not vice versa: if we somehow know that a Person p is really an Employee, we can use a cast: (Employee)p .

Given a Person p we can ask if p.IsInstanceOf(typeof(Employee)).

Inheritance creates hierarchies of classes. As we have seen, all classes inherit from object. If we wish, we can place the keyword abstract before a class declaration to indicate a class whose only purpose is to be part of this hierarchy. Although it may declare members and methods, no objects of an abstract class can be constructed. The abstract class can be extended and used by other classes that can have objects.

1.5 Interfaces

An interface is a set of method headers, e.g.

public interface Do {

public void doit();

public void doit(int how);

}

One interface can extend another. A class can announce that it implements a comma-separated list of interfaces. This means it must declare all of the methods in the interface:

public class Command : Do { . . . }

As with the extends clause, this means that anywhere a Do is specified, a Command can be used. As with abstract classes, variables of an interface type can be declared but of no objects of the interface type can be created. C# has single class inheritance. Interfaces are not inherited. The above line amounts to a promise that the methods of the interface Do will be declared in the class Command.

1.6 Exceptions

C# has a rather good exception-handling mechanism, supported by the keywords throw, throws, try, catch and finally.

You can catch the exception yourself: enclose all (or the relevant part) of the code in a try { } catch block:

public static void main(string[] args) {

try {

. . .

} catch (Exception e) {

Console.WriteLine("caught an Exception ({0})",e.Message);

}

}

You can provide a number of catch clauses to deal with any of the errors or exceptions that might arise in the code you call.

You can throw an Exception yourself if you wish. It has a constructor that allows a Message string to be supplied:

throw new Exception("not yet implemented – sorry");

The detail string can be examined by the catch clause using Message.

Finally, you can declare your own Exception classes:

public class MyException : Exception { . . .

}

and provide two constructors: one with no parameters and one with a string parameter. These should both call the appropriate base constructor of course.

The exceptions mechanism allows you to take specific action at the time the exception is thrown, either in the code preceding the throw, or in the constructor for the exception. It also allows the catcher to take specific action to handle the exception: notice that catching an Exception terminates the try clause prematurely but does not cause premature return from the method that catches it.

A try statement can also have a finally clause. This code will be attempted whatever happens: i.e. if the try block completes successfully, if any of the catch blocks complete successfully (having caught an error that arose in the try block), if something is thrown that matches none of the catch blocks, or if a catch block fails. Note that if execution of a catch or finally block results in another error or exception, this will hide any earlier error.

In some of the following examples we simplify matters by not catching any exceptions (so that the first exception simply terminates the program).

Part 1: Using LexerGenerator and ParserGenerator to write compilers

Here is a simple example to set the scene, based on Example 3.23 from Appel’s book:

ex3-23.parser:

%parser ex3-23.lexer
E :
T PLUS E

|
T ;

T :
X ;

ex3-23.lexer:

%lexer

x
%X

"+"
%PLUS

\r\n
;

ex3-23.txt:

x+x

That’s just about it.

lg ex3-23.lexer

pg ex3-23.parser

csc /debug+ /r:Tools.dll ex.cs ex3-23.lexer.cs ex3-23.parser.cs

ex ex3-23.txt

and ex.cs can be used for many grammars – it merely checks whether an input file conforms to a given grammar d displays the corresponding conrete syntax tree:

using System.IO;

public class ex

{

public static void Main(string[] argv) {

Parser p = new syntax();

StreamReader s = new StreamReader(argv[0]);

SYMBOL ast = p.Parse(s);

if (ast!=null && !(ast is error))

ast.ConcreteSyntaxTree();

}

}

Note: From Chapter 4 the result of the parse will often be an abstract syntax tree, built by the script. The concrete syntax tree is built automatically in version 4.3 of the tools.
LexerGenerator reads a script file and produces a C# file, which when compiled with Tools.dll, implements the lexical analysis phase of a compiler. Similarly, ParserGenerator reads a script file and produces a C# file, which, when compiled with Tools.dll, implements the syntax analysis phase of a compiler.

It is normal practice to define attributes for symbols and tokens, and add action code to the script files in both cases so that the other phases of compilation are carried out at the same time. Classes and functions defined in any other source files and libraries can also be used.

Chapter 2: Using LexerGenerator
The arguments for the lg command are

[-D] sourcefile
where sourcefile is a lexer script, as described below. The lg command will generate a sourcefile.cs , after stripping the .txt extension if present.
The -D flag is for debugging your script, and results in a printout of the resulting finite state automaton to the console.
The –C flag is for selecting an encoding for your script. By default, ASCII will be used, because \r is locale-specific, and the tools use \r internally. If the encoding is changed from this default value, you should take care either that your input files do not contain \r, or that \r is well-behaved in the chosen encoding. (Note that the sample files all contain \r.) A lexer script can use the %encoding directive to define a different encoding for input files. The possible values of encoding are the same as for the %encoding directive in lexer scripts (see Appendix A). If -C is present but the encoding is not specified, the locale-dependent default encoding will be used.
When compiling sourcefile.cs, you will need to refer to Tools.dll, thus

csc /r:Tools.dll …

assuming Tools.dll is in the working directory. The file testlexer.cs contains a suitable Main function that uses Console input.

csc /debug+ /r:Tools.dll testlexer.cs sourcefile.cs
I recommend using the debug flag during testing. I also recommend using .bat files for these awkward command lines. lxcs.bat contains a suitable command file for this command:

csc /debug+ /r:Tools.dll testlexer.cs %1.cs

and so can be invoked as lxcs outfilebase .
The first step in defining the lexical elements of a language is to define a list of tokens and rules for their recognition: regular expressions have become a standard way of doing this.

The format of a script for lex was that after a definitions section, the main part of the script consisted of a list of regular expressions and corresponding actions. These actions became fragments of a C function called yylex() which returned an integer describing the next token. If an action contained a return statement, then the corresponding string was in the global variable yytext[].

In the Lexer, the function for returning the next token is Next(), which returns a TOKEN. All tokens declared in the script are required to be subclasses of this default class. A TOKEN contains the string matched as the member variable yytext.
2.1 Regular Expressions

Regular expressions are defined using a recursive construction. Appendix A contains the details: basically the following special characters are defined:

	Regular expression
	Matches

	(R)
	R

	[SetofChars]
	any 1 character in the SetofChars. Ranges of chars can be indicated with -. Complementation by ^. \ escapes can be used for special characters

	.
	Any character except newline

	'string'
	string

	"string"
	string

	U'string'
	Case-insensitive string

	U"string"
	Case-insensitive string

	any character not mentioned here
	Itself. \ escapes can be used for special characters

	RS
	R followed by S

	R*
	0 or more occurrences of the regular expression R

	R?
	0 or 1 occurrence of the regular expression R

	R+
	1 or more occurrence of the regular expression R

	R|S
	R or S

Parentheses () should be used to indicate precedence. In particular the RS and R|S constructs are of equal precedence and associate to the right, so that A|BC means A|(BC) and BC|A means B(C|A) ..

2.2 The script for a Lexer

The purpose of this section is to introduce the LexerGenerator script by means of some fairly simple examples. Full reference information for the script can be found in Appendix A.

Example 2.1. A language for accepting telephone numbers written in various formats should allow sequences of digits and some other special signs. A suitable LexerGenerator script might be

%lexer

// for telephone numbers

[0-9]+
{ return new TOKEN(yytext); }

'+'

{ return new TOKEN("00"); }

[-() \n\r]
;
// ignore - sign and () used in telephone numbers

and any other character appearing in the input would cause an error. From this code, we see that TOKEN is in fact the name of a C# class. The resulting Lexer would ignore the special characters except for + which would be converted into a token 00 , and would otherwise return a token for each digit sequence in the input. For example, the input +44-141 (848)3000 and many variations would give the 5-token sequence "00" "44" "141" "848" "3000" ; it would be tolerant of unbalanced ()'s and many other odd problems.

The following commands demonstrate this lexer (lxcs and testlexer are described in the next section):

lg 21.lexer

lxcs 21

testlexer 21.txt

The C# compiler generates two warnings at the lxcs phase above, about unreachable code. This is a feature of the use of this rather awkward style of action. The first action in curly brackets in the above script can be abbreviated as follows:

 [0-9]+
%TOKEN

This notation is what is called here a "special action". In these tools, users are encouraged to develop their own token classes derived from TOKEN to use in this way: we see an example of how this can be done next.

In lex, actions could compute a value into a global variable called yylval, for the token just being returned from lex. Yacc picked up this value so that it could be accessed using the $1 notation. LexerGenerator preserves this behaviour for compatibility purposes, with the apparently global identifier yylval defined to refer to a special default attribute m_dollar of TOKEN. (yylval is in fact a read/write property of TOKEN which simply gets/sets m_dollar.)

Example 2.2. A recogniser for identifiers and integers.

%lexer
// for a simple language

[0-9]+

%Int { yylval = int.Parse(yytext); }

[A-Za-z_]+
%Ident

[-+*/().]
%TOKEN

[\t\n\r]

;

This Lexer will ignore white space except for the purpose of delimiting Ints and Idents. The input stream will be converted into a stream of three sorts of item: TOKEN, Ident, and Int. Any other input will be flagged as illegal.

From the above discussion, we know that TOKEN is predeclared for Lexer. The other two token classes are specific to this example, and are implicitly declared by occurring in rules in the %name format. The note on the previous example encouraged us to expect that these classes should be derived from TOKEN, and LexerGenerator inserts the derivation from TOKEN by default. We will see in later chapters that it can be useful to derive tokens from our own classes.

Notice the following points:

(a) The code in curly brackets, in conrast to the previous example, contains no return keyword. It is in fact a constructor for a LexerGenerator supplied class Int_1 derived from the Int class.

(b) There is no constructor given for Ident, so a default body {} is supplied by LexerGenerator. By default the spelling of the token is the string matched (yytext) which is a read/write property of TOKEN.

(c) There is a field of TOKEN called pos that represents the position of the start of the token in the input. There is a string property Pos of the form “line nn, char mm: “ from this position information:

Example 2.3. The LexerGenerator script for a simple desk calculator program might be (this is 23.lexer).

%lexer
//
desk calculator

%token Variable {

static int[] values = new int[26];

public int vblno;

// identifies this variable

public int Value{ get { return values[vblno]; } set { values[vblno] = value;}}

}

[0-9]+

%Int { yylval = int.Parse(yytext); }

[a-z]

%Variable { vblno = (int)yytext[0]- (int)'a'; }

[-+*/^=\n;()]
%TOKEN

\r

;

Here we see an explicit %token class declaration. It looks very similar to a C# class declaration, except that the keyword %token replaces public class or struct.

(a) Variable is a derived class of TOKEN; this is supplied by default. The default constructor is supplied by LexerGenerator and declared public.

(b) Note the static list of values for Variable. This is part of the class, not part of each instance: if the variable z occurs in several places, each one will be a different Variable, but whenever we access the Value property we access the shared array of values to get the value values[25].

(c) Note that you will probably want to declare all instance variables, methods and properties as public. protected is useful as an alternative: private is unlikely to be useful.

(d) In the last regular expression here, - must be at the start, and ^ must not be at the start, of the sequence of characters enclosed in square brackets. (Why?)

We will return to this example in the next chapter, where the rest of the desk calculator program can be found.

Example 2.4. A language describing a way of rewriting calendar dates might want to define attributes such as month number, day number etc. A suitable LexerGenerator script might be

%lexer
//
for dates

%token Year {

public int year;

public bool leap;

// if year divisible by 4 (valid for 1901-2099)

}

%token Month {

public int month;

}

%token Day {

public int day;

}

(19[1-9][0-9])|(20[0-9][0-9])
%Year { year = int.Parse(yytext); leap = (year%4 == 0); }

Jan(uary)?

%Month { month = 1;}

Feb(ruary)?

%Month { month = 2;}

Mar(ch)?

%Month { month = 3;}

Apr(il)?

%Month { month = 4;}

May

%Month { month = 5;}

June?

%Month { month = 6;}

July?

%Month { month = 7;}

Aug(ust)?

%Month { month = 8;}

Sep(tember)?

%Month { month = 9;}

Oct(ober)?

%Month { month = 10;}

Nov(ember)?

%Month { month = 11;}

Dec(ember)?

%Month { month = 12;}

([1-9])|([12][0-9])|(3[01])

%Day { day = int.Parse(yytext); }

[,\t\r\n]

;

Notes:

(a) Each line of form %Month { month = ?; } supplies the default constructor for a new class for each month.

(b) The implicitly defined classes are Month_1, Month_2, etc and are automatically derived from Month.

(c) The associated token returned to a Parser will be Month, because that is the identifier explicitly declared. We will return to this point in a later chapter.

2.3 Using the Lexer

We will see in Chapters 3 and 4 that the usual way of using the tokens.cs file generated by LexerGenerator is in compilers (in conjunction with the file generated by ParserGenerator).

It may nevertheless be useful to see how the Lexer defined in these files can be used simply. The simplest possible example is perhaps to have a program that prints out the token list returned by successive calls to Lexer::Next(). Such a program is provided in testlexer.cs .

Example 2.5

// testlexer.cs

using System.IO;

public class testlexer {

public static void Main(string[] argv){

Lexer lexer = new tokens();

lexer.Start(new StreamReader(argv[0]));

foreach(TOKEN tok in lexer) {

Console.WriteLine("{0} {1}", tok.GetType().Name, tok.yytext);

}

}

}

The version of testlexer.cs in the distribution is a little more complicated since it also allows for text encoding selection. It also uses tok.yyname() instead of tok.GetType().Name.
Notice that lexer.cs and *.tokens.cs work together to ensure that the lexer.Start() function does all that is required to set up the Lexer. The constructor tokens() for your subclass of Lexer uses the lexer tables serialised by default in *.tokens.cs (see below).

If the files generated from Example 2.4 are linked with the above code and the Tools.dll class library, we could get something like this as a test run:

Type some input for the Lexer: 10 August, 1995
Day 10

Month_8 August

Year 1995

Type RETURN to quit

Example 2.6 Start states

LexerGenerator also supports start states: The code fragment on page 33 of Appel’s book becomes:

%lexer // showing start states

[\t\n\r]
;

if

%IF

[a-z]+
%ID

"(*"

{ yybegin("COMMENT"); }

<COMMENT>"*)"
{ yybegin("YYINITIAL"); }

<COMMENT>.
;

<COMMENT>\n
;

Note that omitting the <STATE> in LexerGenerator is the same as specifying state YYINITIAL.

To try out the above example, use the testlexer.exe built by lxcs.bat, and the input file 26.txt:

if abcd (* this

 is a comment *) is done

This gives output

IF if

ID abcd

ID is

ID done

Example 2.7 Unicode and other predefined categories (see Appendix A): 27.lexer

%lexer // for Unicode categories (see Appendix A)
end

%END

{Letter}+

%WORD

.

%TOKEN

[\t\r\n]
;

27.txt

This is the end of the road.

Example 2.8 Case-insensitive comparison

%lexer

U"abc"
%ABC

.
%TOKEN

28.txt

a b C abC acb

Example 2.9 Reserverd Words: 29.lexer
%lexer // showing case-insensitive reserved words

[A-Za-z][A-Za-z0-9]*
%ID %except U { BEGIN, END }
.
%TOKEN

[\t\r\n]
;

27.txt

This is the end of the road.

Chapter 3: Using ParserGenerator

The script used as input by ParserGenerator defines a language by giving a Grammar. We review very briefly the notions of Grammar in this section.

The tokens file must be named explicitly in the %parser directive of the parser script (with or without the .cs extension). The arguments for the pg command are

[-D] [-K] [-L] [-C] sourcefile
where sourcefile is a parser script, as described below. The tool will generate a file called sourcefile.cs , after stripping the .txt extension from sourcefile if present.
The -D flag requests a printout of the parsing table constructed by ParserGenerator and is used for debugging your parser script. See Appendix, section D4, for an example of the type of printout produced.
The –K flag (keep going) requests that ParserGenerator should attempt to finish processing the script even if serious errors are found in the script. (Shift/reduce errors are so common that they do not count as serious errors). This flag is implied by –D.
The –L flag skips the LALR phase of parser generation, to give an SLR parser. This saves a little time.
The –C flag suppresses the building of the concrete syntax tree during parsing, which will usually save memory.
3.1 Grammars

Parsing determines whether a given sentence is grammatically correct for a particular language, that is, whether it obeys the grammatical rules for the language. It is normal practice to give these grammatical rules using BNF or a version of it, in the form of "productions". The productions specify in a top down manner the alternative ways of constructing a sentence from components corresponding to the clauses, phrases, parts of speech of natural language. The words describing such components, such as "sentence", are called the symbols of the language; the lowest level symbols are those describing individual words or punctuation marks (the input symbols or tokens).

Thus a language is syntactically specified by giving a starting symbol (e.g. "sentence"), and a set of rules showing how a symbol can be constructed as a sequence of other symbols. There are various notations for these productions, all sharing the Backus-Naur Form (BNF) as a common ancestor, but differing slightly in the special symbols used.

In this booklet, we stick closely for the most part to the version of BNF used for yacc. A simple production may have the form

A : something ;
which explains how the symbol A may be a sequence of symbols, e.g. A : B C ; says that an A can be a B followed by a C. There may be other productions with A as the left hand side, representing other ways in which A can be build up from components of the language. Since input symbols (tokens) represent the most elementary symbols of the language, they never appear on the left hand side of a production.

A set of productions with the same left hand side can be combined using the symbol | indicating alternative right-hand sides.

3.2 The script for a Parser

The script must begin with the %parser directive, which must name the associated tokens file generated by LexerGenerator (with or without the .cs extension). As with LexerGenerator, it can contains fragments of C# code enclosed in %{ and %} . %symbol definitions are similar to %token definitions for LexerGenerator, and as we will see, both tools allow %node definitions for classes derived from these.

Productions follow the above BNF style format but actions can be added usually at the ends of right-hand sides of productions. Actions or rules consist of C# code in curly brackets, or %Name where Name is the name of a symbol or node. YyParser can be defined to be left or right associative, given precedence, and the start symbol can be explicitly identified (the left-hand side of the first production is usually assumed to be the start symbol).

The complete reference for the input format is given in Appendix B. Some examples will probably help, though.

Example 3.1. A parser for checking that an expression is well-formed might be written as (say in a file 31.parser)

%parser 31.lexer
E
:
'x'

|
E '+' E

|
E '*' E

|
'(' E ')'

;

This script could be used in conjunction with the following LexerGenerator script (say in 31.lexer):

%lexer

[x+*()]
%TOKEN

or by writing your own Lexer class – a simple matter here.

Here is a suitable Main program for this (ex.cs):

using System.IO;

using Tools;

public class ex

{

public static void Main(string[] argv) {

Parser p = new syntax();

//

p.m_debug=true;

StreamReader s = new StreamReader(argv[0]);

SYMBOL ast = p.Parse(s);

if (ast!=null && !(ast is error))

ast.ConcreteSyntaxTree();

}

}

and suitable data (31.txt):

(x+(x))*x

(Note that if the input file uses a text encoding different from the default on your system, you supply the encoding as a parameter to StreamReader in the usual way. There is no need to tell Parser about this.) Then use the following command lines (recommended that the third one is a batch file, see excs.bat):

lg 31.lexer

pg 31.parser

csc /debug+ /r:Tools.dll ex.cs 31.lexer.cs 31.parser.cs

ex 31.txt

The pg stage will report four shift/reduce conflicts (see below). The last command line should give the output

-E

 |-E

 | |-TOKEN<(>

 | |-E

 | | |-E

 | | | -TOKEN<x>

 | | |-TOKEN<+>

 | | -E

 | | |-TOKEN<(>

 | | |-E

 | | | -TOKEN<x>

 | | -TOKEN<)>

 | -TOKEN<)>

 |-TOKEN<*>

 -E

 -TOKEN<x>

Note that the output of p.Parser() will be on object of the class of the start symbol in the case of success. It is your responsibility (if you wish) to construct a syntax tree (see ex 3.4 below). In this case the start symbol is E and it is just a subclass of SYMBOL. The only difference from SYMBOL is that yyname() gives E instead of SYMBOL. The next few sections give more interesting examples, where the returned instance of the start symbol contains more useful information.

Example 3.2. Using the old conventions of lex and yacc, the next step would be to perform some calculations.

%parser 23.lexer
%left '+'

%left '*'

S
:
E '\n' ;

E
:
Int

|
E '+' E { $$ = $1 + $3; }

|
E '*' E
{ $$ = $1 * $3; }

|
'(' E ')'
{ $$ = $2; }

;

In the action code, notice that notation such as $1, $2, etc can be used to refer to the objects returned by the first, second etc entries on the right hand side of the production, and $$ refers to the object constructed on reduction. The default action amounts to $$ = $1; . By default the types of these objects is int (as in yacc).

This works as we might expect, and the result of the parse will be an S whose yylval is the result of the calculation. This gives it the integer attribute yylval discussed in section 2.

Note that the actions do not contain a return keyword. Nevertheless, as stated above, whenever any of these productions reduces, ParserGenerator constructs a pointer to a new object of type E, and arranges to place the integer value $$ as yylval in this new object.

The above script could be used with the lexer developed in example 2.3: note that we are not yet using the Variable token.

Here is 32.cs:

using System.IO;

using Tools;

public class ex

{

public static void Main(string[] argv) {

Parser p = new syntax(new tokens());

StreamReader s = new StreamReader(argv[0]);

S ast = (S)p.Parse(s);

if (ast!=null) // get null on syntax error

Console.WriteLine((int)(ast.yylval));

}

}

and suitable data (32.txt):

(2+3)*5+25

Then use the following command lines (suggest putting the third one in a .bat file):
lg 23.lexer (Yes that’s right: see above)
pg 32.parser

csc /debug+ /r:Tools.dll 32.cs 23.lexer.cs 32.parser.cs

32 32.txt

There should be no errors or warnings. The last command line should give the output 50

The parser generator implicitly constructs a class for each symbol occurring on the left side of a production. Classes can also be declared explicitly: the explicit declaration of E in the above example would be

%symbol E;

or

%symbol E {}

Explicit declarations are required if you want to declare additional members of the symbol inside the curly brackets.

By default, whenever the parser "reduces" a production in a stage of the derivation, it constructs a pointer to the left-hand side symbol. This happens in the above example: the result of any reduction will be a pointer to a new empty object E .

The %symbol parser directive defines a C# class that will be associated with a grammar nonterminal, in such a way that a grammar rule reduction constructs a new object instance inheriting from this class. The %node parser directive defines a C# class, subclassing such a symbol class, that can be associated with some of its grammar rule reductions.

Example 3.3. It is more in the spirit of C# to define a suitable Expression class with its own value attribute:

%parser 23.lexer
%symbol E {

public int val;

}

%left '+'

%left '*'

S
:
E '\n' { $$ = $1.val; };

E
:
Int

{ val = $1; }

|
E '+' E { val = $1.val + $3.val; }

|
E '*' E
{ val = $1.val * $3.val; }

|
'(' E ')'
{ val = $2.val; }

;

ParserGenerator automatically works out the type expected for $1 etc, and ensures that the resulting C# code makes sense.

Even better would be to define a new %node, derived from the associated symbol, for each of the possible reductions we want to do. ParserGenerator does this for us by default if keywords of form %name precede the action code.

Here is 33.cs, it uses 23.lexer again and 32.txt will do for sample data.

using System.IO;

using System;

public class ex

{

public static void Main(string[] argv) {

Parser p = new syntax(new tokens());

StreamReader s = new StreamReader(argv[0]);

S ast = (S)p.Parse(s);

if (ast!=null)

Console.WriteLine((int)ast.yylval);

}

}

Theoretically speaking, precedence directives are a cop-out. It is always possible to transform the grammar to do the same job. But many mathematical operators are binary X (X (X or unary X (X, and precedence directives allow the parser to provide such features as left or right associativity.

Example 3.4 Here is an example showing the features of the precedence system (37.parser):

%parser 37.lexer // 3.7

%symbol E { public string str; }

%left '+' '-'

%left '*' '/'

%right '^'

%nonassoc '='

%after '&'

%before '-'

E
: ID:x

{ str = x.yytext; }

| '-' E:e

{ str = string.Format("(-{0})",e.str); }

| E:e '&'

{ str = string.Format("({0}&)",e.str); }

| E:a '+' E:b
{ str = string.Format("({0}+{1})",a.str,b.str); }

| E:a '-' E:b
{ str = string.Format("({0}-{1})",a.str,b.str); }

| E:a '*' E:b
{ str = string.Format("({0}*{1})",a.str,b.str); }

| E:a '/' E:b
{ str = string.Format("({0}/{1})",a.str,b.str); }

| E:a '^' E:b
{ str = string.Format("({0}^{1})",a.str,b.str); }

| E:a '=' E:b
{ str = string.Format("({0}={1})",a.str,b.str); }

| '(' E:e ')'
{ str = string.Format("({0})",e.str); }

;

The 'before' and 'after' directives refer to the positional location of the unary operator relative to the operand. The order of productions is not important. The order of the precedence directives is important, for it determines the tightness of binding. Here is a suitable lexer (37.lexer):

%lexer 3.7

[\t\r\n]
;

[a-z]

%ID

.

%TOKEN

Here is a suitable main program (37.cs):

using System.IO;

using System;

using Tools;

public class ex

{

public static void Main(string[] argv) {

Parser p = new syntax(new tokens());

StreamReader s = new StreamReader(argv[0]);

E ast = (E)p.Parse(s);

if (ast!=null) // get null on syntax error

Console.WriteLine(ast.str);

}

}

As usual, there is a 37cs.bat file for the compilation step. For the following input (37.txt):

a+b+c*d^-e&^f

we get

((a+b)+(c*(d^(((-e)&)^f))))

Note that it is generally not useful to have a %before operator that is also a binary operator.

ParserGenerator supports yacc-style error recovery: see section 6.5 and the Appendix for details.

Chapter 4. Abstract Syntax

The mechanisms described above can be used to get the parser to build abstract syntax trees. Production should build nodes of the tree, and the symbols on the right-hand side of productions correspond to subtrees that can be built by the production into the node it creates. This can be most conveniently done by using constructors with parameters, as shown in the next few examples.

Traditionally, yacc used $1, $2 as in the above examples to refer to these subtrees. We introduce a modern notation after the following example.

4.1 The $1 notation

Example 4.1.

%parser
23.lexer // desk calculator

%symbol Expression {

public virtual int Value { get { return 0; } }

}

%node Const : Expression {

public Int m_val;

public Const(Int v) { m_val = v; }

public override int Value { get { return m_val.yylval; } }

}

%node Recall : Expression {

public Variable m_vbl;

public Recall(Variable v) { m_vbl = v; }

public override int Value { get { return m_vbl.Value; } }

}

%node Sum : Expression {

public Expression m_left,m_right;

public Sum(Expression a, Expression b) { m_left=a; m_right = b; }

public override int Value { get { return m_left.Value + m_right.Value; } }

}

%node Product : Expression {

public Expression m_left,m_right;

public Product(Expression a, Expression b) { m_left=a; m_right = b; }

public override int Value { get { return m_left.Value * m_right.Value; } }

}

%node Assignment : Expression {

public Variable m_vbl;

public Expression m_exp;

public Assignment(Variable v, Expression e) { m_vbl=v; m_exp = e; }

public override int Value { get { m_vbl.Value = m_exp.Value; return 0; } }

}

%node Bracket : Expression {

public Expression m_inner;

public Bracket(Expression e) { m_inner = e; }

public override int Value { get { return m_inner.Value; } }

}

%right '='

%left '+'

%left '*'

InputLine :

| InputLine Expression { Console.WriteLine($2.Value); } ';' '\n'

;

Expression :
Variable

%Recall ($1)

|
Int

%Const ($1)

|
Expression '+' Expression
%Sum ($1, $3)

|
Expression '*' Expression
%Product ($1, $3)

|
'(' Expression ')'

%Bracket {%2)

|
Variable '=' Expression

%Assignment ($1, $3)

;

Here we see some examples of the definition of nodes: these are subclasses of grammar symbols that can then be used in the action part of productions, as here. The above parser (34.parser) can be used with 23.lexer, ex.cs, and the following sample input (34.txt):

a=78;

b=2;

56*b+a;

You can use any parameters you like in the constructors. You can also use this kind of constructor in combination with {} actions, thus %thing (a) { b(); } . You can continue to use dollars in combination with these conventions, as here. However, it is not recommended to use $$ in a typed node, and ParserGenerator will issue a warning if this is attempted.

4.2 A more modern notation

Example 4.2 Several authors have come up with alternatives to the dollar notations of the previous examples. Here is a simple example using these conventions (35.parser):

%parser 42.lexer
%symbol E {

public int val;

public E(int v) { val = v; }

}

%left '+'

%left '*'

S
:
E:a '\n' { return a.val; };

E
:
Int

|
E:a '+' E:b %E(a.val + b.val)

|
E:a '*' E:b
%E(a.val * b.val)

|
'(' E:a ')'
{ return a; }

;

This can be used with 23.lexer, 32.cs and 32.txt.

Example 4.3: Here is a version of Appel’s Program 4.2:

Here is 42.lexer:

%lexer // for Program 4.2

"+"
%PLUS

"-"
%MINUS

"*"
%TIMES

[0-9]+
%INT { yylval = Int32.Parse(yytext); }

[\t\n\r]
;

Here is 42.parser:

%parser // for Program 4.2

%left PLUS MINUS

%left TIMES

%before MINUS

exp
: INT:i { $$=i; }

| exp:e1 PLUS exp:e2 { $$ = e1+e2; }

| exp:e1 MINUS exp:e2 { $$ = e1-e2; }

| exp:e1 TIMES exp:e2 { $$ = e1*e2; }

| MINUS exp:e { $$ = -e; };

Here is the main program 42.cs

using System;

using System.IO;

using Tools;

public class ex

{

public static void Main(string[] argv) {

Parser p = new syntax(new tokens());

StreamReader s = new StreamReader(argv[0]);

exp ast = (exp)p.Parse(s);

if (ast!=null)

Console.WriteLine((int)(ast.yylval));

}

}

Here is some test data (42.txt):

-3*4+7

Example 4.4: Here are versions of Appel’s “straight line program interpreter” Program 4.4-7 in his book. This shows the use of the %node directive.

Here is 44.lexer:

%lexer // for Program 4.4

%token ID;

%token INT { public int val; }

"+"
%PLUS

"-"
%MINUS

"*"
%TIMES

"/"
%DIV

":="
%ASSIGN

print
%PRINT

"("

%LPAREN

")"

%RPAREN

","

%COMMA

";"

%SEMICOLON

[0-9]+
%INT { val = Int32.Parse(yytext); }

[a-z]+
%ID

[\t\n\r]
;

This script explicitly declares ID and INT to make it easier to build these into the syntax tree.

Here is code corresponding to Programs 4.4, 4.6, 4.7 (44.parser). The grammar portion is at the end:

%parser 44.lexer // Program 4.4

%right SEMICOLON COMMA

%left PLUS MINUS

%left TIMES DIV

%symbol stm {

public virtual Table eval(Table env) { return env; }

}

%symbol exp {

public virtual int eval(Table env) { return 0; }

}

%symbol exps {

public virtual void eval(Table env) {}

}

%node NumExp : exp {

int i;

public NumExp(INT ii) { i=ii.val; }

public override int eval(Table env) { return i; }

}

%node IdExp : exp {

string id;

public IdExp(string i) { id=i; }

public override int eval(Table env) { return env.lookup(id); }

}

%node PlusExp : exp {

exp a,b;

public PlusExp(exp aa,exp bb) { a=aa; b=bb; }

public override int eval(Table env) { return a.eval(env)+b.eval(env); }

}

%node MinusExp : exp {

exp a,b;

public MinusExp(exp aa,exp bb) { a=aa; b=bb; }

public override int eval(Table env) { return a.eval(env)-b.eval(env); }

}

%node TimesExp : exp {

exp a,b;

public TimesExp(exp aa,exp bb) { a=aa; b=bb; }

public override int eval(Table env) { return a.eval(env)*b.eval(env); }

}

%node DivExp : exp {

exp a,b;

public DivExp(exp aa,exp bb) { a=aa; b=bb; }

public override int eval(Table env) { return a.eval(env)/b.eval(env); }

}

%node EseqExp : exp {

stm st;

exp ex;

public EseqExp(stm s,exp e) { st=s; ex=e; }

public override int eval(Table env) { return ex.eval(st.eval(env)); }

}

%node BrackExp : exp {

exp ex;

public BrackExp(exp e) { ex=e; }

public override int eval(Table env) { return ex.eval(env); }

}

%node CompoundStm : stm {

stm stm1, stm2;

public CompoundStm(stm s1, stm s2) { stm1=s1; stm2=s2; }

public override Table eval(Table env) { return stm2.eval(stm1.eval(env)); }

}

%node AssignStm : stm {

string id;

exp ex;

public AssignStm(ID i,exp e) { id=i.yytext; ex=e; }

public override Table eval(Table env) { return new Update(env,id,ex.eval(env)); }

}

%node PrintStm : stm {

exps es;

public PrintStm(exps e) { es=e; }

public override Table eval(Table env) {

es.eval(env); return env;

}

}

%node ExpList : exps {

exp head;

exps tail;

public ExpList(exp hd, exps tl) { head=hd; tail=tl; }

public override void eval(Table env) {

Console.Write(head.eval(env));

if (tail!=null)

tail.eval(env);

else

Console.WriteLine();

}

}

prog : stm:s
{ $$ = s.eval(new EmptyTable()); };

stm : stm:a SEMICOLON stm:b

%CompoundStm(a,b);

stm : ID:i ASSIGN exp:e

%AssignStm(i,e);

stm : PRINT LPAREN exps:e RPAREN %PrintStm(e);

exps : exp:e

%ExpList(e,null);

exps : exp:e COMMA exps:es

%ExpList(e,es);

exp : INT:i

%NumExp(i);

exp : ID:id

%IdExp(id.yytext);

exp : exp:a PLUS exp:b

%PlusExp(a,b);

exp : exp:a MINUS exp:b

%MinusExp(a,b);

exp : exp:a TIMES exp:b

%TimesExp(a,b);

exp : exp:a DIV exp:b

%DivExp(a,b);

exp : stm:s COMMA exp:e

%EseqExp(s,e);

exp : LPAREN exp:e RPAREN

%BrackExp(e);

Here is Program 4.5 and a Main to complete the program (44.cs):

using System.IO;

using System;

public abstract class Table {

public abstract int lookup(string id);

}

public class EmptyTable : Table {

public override int lookup(string id) {

throw new Exception("empty Table");

}

}

public class Update : Table {

Table bas;

string id;

int val;

public Update(Table b, string i, int v) {

bas = b; id = i; val = v;

}

public override int lookup(string i) {

if (i.Equals(id))

return val;

return bas.lookup(i);

}

}

public class ex {

public static void Main(string[] args) {

Parser p = new syntax(new tokens());

//

p.m_debug = true;

p.Parse(new StreamReader(args[0]));

}

}

As usual, we prepare the program using commands

lg 44.lexer

pg 44.parser

csc /debug+ /r:Tools.dll 44.cs 44.lexer.cs 44.parser.cs

Here is the test program from page 9 (Figure 1.4):

a:=5+3; b:=(print(a, a-1), 10*a); print (b)

If this is in 44.txt, then the command 44 44.txt now gives output:

87

80

4.3 Abstract and Concrete Syntax

In chapter 3 we noted that the parser builds the concrete syntax tree by default, where nodes of the tree correspond exactly to grammar symbols and lexical tokens and the parent-child relationship is determined by the grammar productions. In this chapter, we have illustrated the tools’ support for the definition classes (subclassing the grammar symbols) which can have explicit structure such as their own idea of dependent objects. Actions in the parser script (e.g. those of form %A(b,c) as in example 4.1 above) allow constructors in such classes to build more general structures and return them from the Parse. However, it is reasonable to observe that these classes are still concrete syntax classes, and natural to ask what should be done to create a quite different abstract syntax tree?
It is convenient (though not essential) for the parameters of such constructors to be the concrete grammar symbol classes. It is by no means essential for the abstract syntax tree built in this way to have these (concrete) grammar symbol classes as its nodes, and it is entirely possible and even desirable to define your own classes for use in an abstract syntax tree (or more general structure). In this case, your concrete class constructors can build the required abstract nodes and attach them in your tree. There are many ways of returning the result of the parse: if it is felt undesirable to subclass the concrete start symbol with the desired abstract syntax class, then the class corresponding to the start symbol can simply have a field whose value is set to the root of the abstract syntax tree built during the parsing process.
Various compromise design positions are possible. However, in these tools the objects built by parsing actions (such as %A(b,c)) must respect the concrete syntax, that is, they must subclass a grammar symbol corresponding to the.left hand side of the production. This is because in scripts such as

%symbol A { public A(int x) { … } } …

%symbol C { public int y=17; } …
A : B C:x %A(x.y)

C: a b %D

it is felt important that a D should be a C , so that the C# compiler can deal with expressions such as x.y.

4.4 Later stages of the compiler
The design of these tools envisages that the class that calls the Parser takes responsibility for the later phases of compilation. For instance:

SYMBOL s = (new syntax()).Parse(new StreamReader(fname));

CodeGeneration(Semantics(AbstractSyntax(s)));

by means of further computation in the abstract syntax tree, creation of new representations of the source program in the given file, or whatever. The AbstractSyntax function here might of course be very simple at this stage, such as:

AbstractSyntaxTree AbstractSyntax(SYMBOL s) {

Programme p = (Programme)s;

return p.AST;

}

if the abstract syntax tree has been built as suggested in the last section. Typically, the other two functions would involve traversals of the AST or other intermediate representations that might be built.
As there are many choices for compiler implementation, such functions and classes are outside the scope of this booklet. In particular, methods for traversing the AST are a matter for the designers of the abstract syntax tree, and not for the designer of these tools.
Part 2: The output files and how they work

The Lxeergenerator and ParserGenerator each generate a .cs file. These consist of class declarations corresponding to the %token, %symbol, and %node declarations in the source scripts, and four classes whose default names are tokens, yytokens, syntax and yysyntax with unreadable initialised byte arrays to define the lexing and parsing engines, and functions to handle any non-object orientated actions.

The following chapters describe the detailed rationale and operation of the generated code.

Chapter 5. The Lexer class

The purpose of this chapter is to describe the output produced by LexerGenerator (in file tokens.cs) and the relevant parts of the dynamic link library Tools.dll.

Lexer uses a deterministic finite state automaton (DFA), which traverses a data structure implemented by the Dfa class. The data structure amounts to a network of nodes connected by directed arcs. There is a starting node, and at each node the current input character selects at most one arc. Thus the input drives the current node through the structure until it reaches a node where no arc matches the current input character. If this node corresponds to the end of a regular expression in the script file, the corresponding action is performed, otherwise there is an error.

The DFA is shared by all Lexers for the same set of YyLexer, and so share a reference to a YyLexer class. The generated code in tokens.cs contains a serialised version of the DFA. YyLexer.GetDfa() reconstructs it from this integer array, using the deserialise function.

This chapter examines these aspects: the DFA structure, the matching algorithm, the actions mechanism, serialisation, and the remaining parts of the Lexer class.

5.1 Examining the LexerGenerator output file

The general structure of this file is as follows (the examples refer to the 23.lexer script file used earlier):

· using System;

· A set of subclasses of TOKEN defined by the lexer script, each one introduced by a special comment of form //%+ for classes such as Variable where the user provides a %token or %node definition, or //% for those such as Int inferred from inline constructors in the script.

· A set of subclasses of these to create the constructors used in the script, e.g.

public class Variable_1 : Variable {

 public Variable_1(Lexer yyl):base(yyl) { vblno = (int)yytext[0]- (int)'a'; }}

· A public class tokens subclassing the Lexer class, which refers to a class yytokens which has an unreadable constructor. This has two parts: an array arr containing the serialisation of the DFA data structure described in the next section, and code to install the class factories required for the above classes.

public class yytokens : YyLexer {

public yytokens(ErrorHandler eh):base(eh) { arr = new int[] { 6,101,4,16,117,

0,115,0,45,0,

97,0,115,0,99,...

5,0,0};

 new Tfactory("Int",new TCreator(Int_factory));

 new Tfactory("Variable_1",new TCreator(Variable_1_factory)); ...

}

· The next part of the tokens class consists of the class factory methods:

public static object Int_factory(Lexer yyl) { return new Int(yyl);}

public static object Variable_1_factory(Lexer yyl) { return new Variable_1(yyl);} ...

· The final part of the tokens class consists of a method to handle any remaining actions in the lexer script.

public override TOKEN OldAction(Lexer yyl,ref string yytext, int action, ref bool reject) {

 switch(action) {

 case -1: break;

 case 18: ;

 break;

 }

 return null;

}}

5.2 The DFA structure

The following picture gives a helpful mental model of a DFA. It is useful to number states with the starting state given the number 0. Possible terminal states are shown as thick circles, and the arcs are labelled with an indication of the character or character range that matches them. (Exercise: what regular expression is equivalent to this DFA?)

This data structure is implemented using C# classes as follows. The Dfa class describes a single node of the DFA: the entire DFA is pointed to by its start node. The following code is for the lexer client:

public class Dfa : LNode

{

public Dfa(TokensGen tks) :base(tks) {

}

public Hashtable m_map = new Hashtable(); // char->Dfa: arcs leaving this node

public class Action { …

} …

public string m_tokClass = ""; // token class name if m_actions!=null

internal Dfa(Nfa nfa):base (nfa.m_tks) {

AddNfaNode(nfa); // the starting node is Closure(start)

Closure();

AddActions(); // recursively build the Dfa

}

public int Match(string str,int ix,ref int action) { // return number of chars matched

...

}

public void Print() {

...

}

}

The parent class LNode is simply a numbered object: the numbers are useful to distinguish the nodes (easier than using pointers directly, since pointers will be different each time the structures are serialised), and can be used when displaying the structure during debugging or for purposes of illustration of the algorithms.

LexerGenerate is a subclass of TokensGen, which provides infrastructure for accumulating Nfas and Dfas. Notice that there is a constructor which builds a Dfa for a corresponding Nfa. This uses the standard algorithm and is discussed in a later section.

There is also a Print() method, which is activated by the -D command line flag, and gives an output of the following form:

22:

 299 moxswycqbduhjlnprtvzafegik

 25 #10 (*^)+-/;=

 206 0246813579

 122 #13

25: (14 <TOKEN>)

122: (18 <>)

206: (2 <Int_1>)

 206 7092468135

299: (10 <Variable_1>)

Generally, printouts of this sort have Unicode characters, which are shown in decimal notation prefixed by #. The set of characters in use is a subset of the Unicode character set, controlled by the YyLexer class, and this aspect is discussed in section 5.7 below.

It might be neater to renumber the DFA nodes. It is left as an exercise to devise an elegant algorithm for this.

5.3 The Matching algorithm

The Match method in the last section is as follows:

public int Match(string str,int ix,ref int action) { // return number of chars matched

int r=0;

Dfa dfa=null;

// if there is no arc or the string is exhausted, this is okay at a terminal

if (ix>=str.Length || (dfa=(Dfa)m_map[m_tks.m_tokens.Filter(str[ix])])==null || (r=dfa.Match(str,ix+1,ref action))<0) {

if (m_actions!=null) {

action = m_actions.a_act;

return 0;

}

return -1;

}

// everything worked

return r+1;

}

It is discussed here to give a better understanding of the way the Dfa class is used. Filter is described in section 5.7, and the m_tks.m_tokens prefix accesses the YyLexer class via the TokensGen superclass of LexerGenerator.
Match is the main function of the Dfa class. If we were not concerned about actions, the Match function could be simply int Match(string str). We return the number of characters matched, so that when we call this from the starting position we will be told how much of the input string has been used in the Match. This will be useful if you want to implement actions that cleverly move the current position in the input string (like lex’s yyless() and yymore()), as we will in fact want to do when implementing ParserGenerator.

Dfa is a recursive data structure, so it makes sense to make Match a recursive function. Ignoring terminating conditions and Charset() for a moment, the basic traversal would be implemented by something like

public int Match(string str)

{

Dfa dfa = (Dfa)m_map[str[0]]; // Find which node is for the current character

return dfa.Match(str.Substring(1)) + 1; // This will not do!

}

We need to take account of the end of the string (str[0] might not exist) and the situation where no arc matches the current character. This gives as our next version of this function

public int Match(string str)

{

Dfa dfa=null;

// if there is no arc or the string is exhausted, this is okay at a terminal

if (str.Length==0 || (dfa=(Dfa)m_map[str[0]])==null)

return m_nTerminal?0:-1;

return dfa.Match(str.Substring(1)) + 1; // still not right!

}

If we have exhausted the string, or there are no arcs, 0 characters are matched. If we are at a terminal node this is okay, and the count of how many characters we used gets computed as we return back through the recursive calls. adding 1 each time. But if we are not at a terminal, we want to return -1, and not have any 1’s added in. Better

public int Match(string str)

{

int r;

Dfa dfa=null;

// if there is no arc or the string is exhausted, this is okay at a terminal

if (str.Length==0 || (dfa=(Dfa)m_map[str[0]])==null ||

(r=dfa.Match(str.Substring(1)))<0)

return m_nTerminal?0:-1;

return r + 1;

}

Finally, we also want to know what sort of action to take, so the function has a return parameter for the action, which get filled in at the terminal node we reach.

public int Match(stringstr,ref action)

{

int r;

Dfa dfa=null;

// if there is no arc or the string is exhausted, this is okay at a terminal

if (str.Length==0 || (dfa=(Dfa)m_map[dfa.Charset(str[0])])==null ||

(r=dfa.Match(str.Substring(1),ref action))<0) {

if (m_actions!=null) {

action = m_actions.a_act;

return 0;

}

return -1;

}

return r + 1;

}

Purists might argue that the above code is not really deterministic, since the recursive call of Match is basically an exploration, and will lead to further calls: we backtrack if the input doesn't match.

Note that in the above code m_actions is evidently a list of possible actions. This version of LexerGenerator implements the lex-style REJECT action: the Lexer class’s Match function backtracks on REJECT actions.

Lexer’s Match function returns a bool representing success, and constructs a TOKEN:

// match a Dfa against lexer's input

bool Match(ref TOKEN tok,Dfa dfa) {

int ch=PeekChar();

int op=m_pch, mark=0;

Dfa next;

if (dfa.m_actions!=null)

mark = Mark();

if ((next=((Dfa)dfa.m_map[m_tokens.Filter(ch)]))==null) {

if (dfa.m_actions!=null)

return TryActions(dfa,ref tok); // fails on REJECT

return false;

}

Advance();

if (!Match(ref tok, next)) { // rest of string fails

if (dfa.m_actions!=null) { // this is still okay at a terminal

Restore(mark);

return TryActions(dfa,ref tok);

}

return false;

}

return true;

}

The backtracking is controlled by the following helper functions

public void Advance() { ++m_pch; }

public virtual int GetChar() { int r=PeekChar(); ++m_pch;

return r;

}

public void UnGetChar() { if (m_pch>0) --m_pch; }

internal int Mark() {

return m_pch-m_startMatch;

}

internal void Restore(int mark) {

m_pch = m_startMatch + mark;

m_LineManager.backto(m_pch);

}

void Matching(bool b) {

m_matching = b;

if (b)

m_startMatch = m_pch;

}

TryActions is discussed in the next section.

5.4 The Actions mechanism

The Lexer’s public interface is in fact given by the Next() function that builds a TOKEN:

public TOKEN Next() {

TOKEN rv = null;

while (PeekChar()!=0) {

Matching(true);

if (!Match(ref rv,(Dfa)m_tokens.m_starts[m_state])) {

Error(String.Format("{0} illegal character {1}",Saypos(yypos), (char)PeekChar()));

return null;

}

Matching (false);

if (rv!=null) { // or special value for empty action?

rv.pos = m_pch-yytext.Length;

return rv;

}

}

return null;

}

For lex actions that do not create tokens (such as the usual action for ignoring white space), the value null is returned by default. For such actions, LexerGenerator codes up a switch statement, so that the integer return value is used to select in this switch statement so that the action is carried out. The code that does this is placed towards the end of the tokens.cs file by LexerGenerator, and is shown in section 5.1 above.

Recall that such actions are allowed to construct perfectly good TOKENs if they wish. This currently results in warnings about unreachable code, since LexerGenerator does not notice this and inserts break statements between the actions. The REJECT action simply sets reject to true.

The function ends with the code

}

 return null;

}}

It remains to explain the TryActions function, which fits between the Match function, which finds terminal states, and the success or otherwise of any Actions:

bool TryActions(Dfa dfa,ref TOKEN tok) {

int len = m_pch-m_startMatch;

if (len==0)

return false;

if (m_startMatch+len<=m_buf.Length)

yytext = m_buf.Substring(m_startMatch,len);

else // can happen with {EOF} rules

yytext = m_buf.Substring(m_startMatch);

// actions is a list of old-style actions for this DFA in order of priority

// there is a list because of the chance that any of them may REJECT

Dfa.Action a = dfa.m_actions;

bool reject = true;

while (reject && a!=null) {

int action = a.a_act;

reject = false;

a = a.a_next;

if (a==null && dfa.m_tokClass!="")
{ // last one might not be an old-style action

tok=(TOKEN)factory.create(dfa.m_tokClass);

} else

tok = OldAction(this,ref yytext,action,ref reject);

}

return !reject;

}

This concludes the explanation of the OldAction function, which is found in the tokens.cs file.

5.5 Serialisation

The bulk of the lg outfile file, however, consists of a totally unreadable array declaration, beginning

arr = new int[] {

This is a serialised form of the Lexer's internal data, including the DFA. It is placed in the output file by LexerGenerator’s Emit() method, which is discussed in Chapter 7. The resulting compiler retrieves it in YyLexer.GetDfa():

// Deserializing

public void GetDfa()

{

if (tokens.Count>0)

return;

Serialiser f = new Serialiser(arr);

m_encoding = (Encoding)f.Deserialise();

toupper = (bool)f.Deserialise();

cats = (Hashtable)f.Deserialise();

m_gencat = (UnicodeCategory)f.Deserialise();

usingEOF = (bool)f.Deserialise();

starts = (Hashtable)f.Deserialise();

Dfa.SetTokens(this,starts);

tokens = (Hashtable)f.Deserialise();

}
 This mechanism has the advantage of simplicity for simple applications, but allows advanced users to create multiple lexers in the same application if they wish.

5.6 The Lexer class

The rest of the Lexer class is defined in lexer.cs as:

public class Lexer

{

public bool m_debug = false;

// the heart of the lexer is the DFA

public Dfa m_start { get { return (Dfa)m_starts[m_state]; }}

protected string m_state = "YYINITIAL";

// lex implementation

public Lexer(YyLexer tks) { m_state="YYINITIAL";;

m_tokens = tks;

}

public Token m_tokens;

public string yytext; // for collection when a TOKEN is created

public int m_pch = 0;

public int yypos { get { return m_pch; }}

public void yybegin(string newstate) {

m_state = newstate;

}

public string m_buf;

bool m_matching;

int m_startMatch;

// match a Dfa against lexer's input

bool Match(ref TOKEN tok,Dfa dfa) {

...

}

// start lexing

public void Start(StreamReader inFile) {

m_tokens.GetDfa();

inFile = new StreamReader(inFile.BaseStream,m_tokens.m_encoding);

m_buf = inFile.ReadToEnd();

m_pch = 0;

}

public void Start(CsReader inFile) {

m_tokens.GetDfa();

if (!inFile.Eof())

for (m_buf = inFile.ReadLine(); !inFile.Eof(); m_buf += inFile.ReadLine())

m_buf+="\n";

m_pch = 0;

}

public void Start(string buf) {

m_tokens.GetDfa();

m_buf = buf; m_pch = 0;

}

public TOKEN Next() {

...

}

bool TryActions(Dfa dfa,ref TOKEN tok) {

...

}

internal int PeekChar() {

if (m_pch<m_buf.Length) {

char ch = m_buf[m_pch];

if (ch=='\n')

m_LineManager.newline(m_pch);

return ch;

}

if (m_pch==m_buf.Length && m_tokens.usingEOF)

return (char)0xFFFF;

return (char)0;

}

public void Advance() { ++m_pch; }

public virtual int GetChar() { int r=PeekChar(); ++m_pch;

return r;

}

public void UnGetChar() { if (m_pch>0) --m_pch; }

internal int Mark() {

return m_pch-m_startMatch;

}

internal void Restore(int mark) {

m_pch = m_startMatch + mark;

backto(m_pch);

}

void Matching(bool b) {

m_matching = b;

if (b)

m_startMatch = m_pch;

}

internal void Error(string s) {

m_tokens.Error(s);

}

}

CsReader is a version of StreamReader that strips comments out of a given stream. It is defined in lexer.cs and is a nice example of a finite-state automaton:

public class CsReader

{

StreamReader m_stream;

int back; // one-char pushback

Lexer yylx;

enum State {

copy, sol, c_com, cpp_com, c_star, at_eof, transparent

}

State state;

int pos = 0;

public CsReader(Lexer yyl,string fileName) {

yylx = yyl;

FileStream fs = new FileStream(fileName,FileMode.Open);

m_stream = new StreamReader(fs);

state= State.copy; back = -1;}

public bool Eof() { return state==State.at_eof; }

public int Read(char[] arr,int offset,int count) {

...

}

public string ReadLine() {

...

}

public int Read() {

...

}

Looking back to the Lexer class, we see that it has two corresponding versions of the Start function, one taking an ordinary stream, and one taking a CsReader.

Finally the LineManager class automatically handles the “line nnn, char nnn” parts of error messages for us, so that error positions can be simple integers, actually offsets from the start of the source. Lexer automatically calls newline() whenevr it passes a new line, and this adds another instance to LineList. The public function saypos(int pos) generates the “line nnn, char nnn:” string. The remaining functions are used by the CsReader class to ensure that error messages still work when comments are stripped out.

Tabs in source files are handled naively, and regarded as single characters, which can be confusing if the reported character position is compared with the column position as reported by Visual Studio.

5.7 Charset

In early versions of lex and of these tools, a 7-bit character encoding was used, so that simple arrays and bitmaps could be used for managing sets of characters in regular expression manipulation and in constructing the Dfa. With the introduction of Unicode, the character set has a 16-bit encoding, so that such arrays become wastefully sparse. So, Hashtables are used instead, and Unicode categories are predefined so that Uniocde rules for identifiers etc can be constructed.

A character is said to be in use in YyLexer if it is explicitly mentioned in a regular expression, or forms part of a range: e.g. [a-z] uses all characters from a to z inclusive. The regular expression . is treated as [^\n] and so uses only the control character \n . A character that is not is use is filtered and replaced by a “generic” character representing all such characters. Thus in the DFA, instead of having an arc for each of the characters that is not in use, we simply have an arc for the generic character. The filtering process only affects arc traversal: yytext[] will still contain the actual input character in question.

With the introduction of the Unicode category feature in Lexer, categories can also be in use: a category is in use if it is explicitly mentioned in the rules, e.g. {Upper} or if any of the characters it contains is in use. The filtering process above, preserves the category for any categories in use (so that when a character is filtered it is replaced by a generic character of the same category if that category is in use). Input characters that belong to some other category are filtered using a generic category that represents all categories not in use.

The Charset class is follows:

[Serializable] internal class Charset {

internal UnicodeCategory m_cat;

internal char m_generic; // not explicitly Using'ed allUsed

internal Hashtable m_chars = new Hashtable(); // char->bool

internal Charset(UnicodeCategory cat)

{

m_cat = cat;

for (m_generic=char.MinValue;Char.GetUnicodeCategory(m_generic)!=cat;m_generic++)

;

m_chars[m_generic] = true;

}

}

YyLexer keeps track of the Unicode categories in use:

// support for Unicode character sets

public Encoding m_encoding = new ASCIIEncoding();

public bool usingEOF = false;

public Hashtable cats = new Hashtable(); // UnicodeCategory -> Charset

public UnicodeCategory m_gencat; // not a UsingCat unless all usbale cats in use

It maintains a variable m_gencat to represent a category that is not in use (unless all are in use, in which case m_gencat is not referenced). For each category, there is an instance of Charset, which records which characters in the category are in use, and maintains a variable m_generic to represent a character that is not in use (unless all are in use, in which case m_generic will not be referenced).

The above considerations explain the rather odd appearance of the Dfa displays obtained with the –D flag. For example, lg –D 27.lexer produces the following:

36:

 37 #453 nd #443 Aa #688

 64 #9 #13

 93 ! #0

 79 #10

 111 e

37: (23 <WORD>)

 38 #453 en #443 dAa #688

38: (23 <WORD>)

 38 #453 en #443 dAa #688

64: (29 <TOKEN>)

79: (33 <>)

93: (29 <TOKEN>)

111: (23 <WORD>)

 38 #453 e #443 dAa #688

 123 n

123: (23 <WORD>)

 38 #453 en #443 Aa #688

 132 d

132: (2 <END>)

 38 #453 en #443 dAa #688

The 27.lexer file uses only the characters e n d and some space and newline characters, and the Unicode category {Letter} . a nd A in the above display represent other letters, ! represents other punctuation, and there are Unicode characters for other kinds of Letter and punctuation, and representing the generic category.

Chapter 6: The Parser class

The parser uses a deterministic SLR (bottom-up) parsing algorithm, using one token lookahead.

The generated code in pg’s output file has a rather similar structure to the output file considered in 5.1 above. It consists of

· the C# version of the symbol and node declarations from the ParserGenerator script,

· A subclass called syntax of the Parser class, which defines an Action function for the old-style actions in the script,

· an unreadable int array containing the Parser data structures in a serialised form.
The details are contained in later sections of this chapter.

6.1 Grammar preliminaries

A (context-free) grammar is defined by giving

(a) a set of symbols, some of which are terminal symbols or tokens, and one of which is defined to be the start symbol S, and

(b) a set of productions, of form A ((, where A is a (non-terminal) symbol, and (is a sequence of symbols.

Then we write (A(((((if A ((is a production, and (and (are sequences of symbols; and we write

If there is a sequence (= (0 , (1 , ... , (n = (, such that (i ((i+1 each i , we say that there is a derivation of (from (.

The language generated by this grammar is the set of sentences L = { (: (is a sequence of tokens and there is a derivation of (from S } .

If all that seems very abstract, consider a simple example.

Example 3.1 An Expression might have the following grammar:

The YyParser are E x + * (), with E the start symbol, and all the rest are tokens.

The Productions are E (x , E (E + E , E (E * E , and E ((E) .

Then among the sentences of this language we find x*(x+x) . To show that this is indeed a sentence we construct the derivation of x*(x+x) from E :

E (E * E (E * (E) (E * (E + E) (E * (E + x) (E * (x + x) (x * (x + x)

There is usually more than one such derivation: this one is the rightmost derivation of x*(x+x) from E, because it is the rightmost non-terminal symbol that is replaced by one of its right hand sides at each stage.

More practical notations for productions are BNF and EBNF. ParserGenerator follows yacc in using a sort of BNF in which productions for the same left hand side can be combined using the | symbol, : is used instead of (, and a ; indicates the end of a production, so that the above set of productions can be written

E : 'x' | E '+' E | E '*' E | '(' E ')' ;

6.2 LALR Parsing

LALR parsing is a bottom-up method, which means that the algorithm proceeds by examining the input tokens left-to-right (this is what the L stands for), to identify which productions are being used. The R in LALR indicates that the rightmost derivation is constructed using the algorithm. Finally the LA stands for look-ahead: the parser computes the set of characters that may follow a given grammar symbol in a correct sentence, and uses this to choose what to do doing the parse.

YyParser, initially taken from the input are shifted onto a stack until the top of the stack matches the right hand side of a production. Then the stack is reduced by replacing this right hand side with the corresponding left hand side, and the process continues until the entire input sequence has been reduced to the start symbol ("sentence").

Applying this process to the above example gives:

	
	
	x * (x + x)

	
	x
	* (x + x)

	reduce by production 1:
	E
	* (x + x)

	
	E *
	(x + x)

	
	E * (
	x + x)

	
	E * (x
	+ x)

	reduce by production 1:
	E * (E
	+ x)

	
	E * (E +
	x)

	
	E * (E + x
)

	reduce by production 1:
	E * (E + E
)

	reduce by production 2:
	E * (E
)

	
	E * (E)
	

	reduce by production 4:
	E * E
	

	reduce by production 3:
	E
	

6.3 The syntax tree

In the ParserGenerator tool presented in this book, a symbol in the language corresponds to a class in the compiler. Many texts on compilers come close to this in discussing the syntax tree: each symbol corresponds to a node in the syntax tree, with each production describing how a node representing symbol on the left hand side can be built up from the right hand side: the right side symbols are children of the node in the syntax tree.

The syntax tree for the above example is:

From the viewpoint of this book, there are several classes of node that correspond to the symbol E. Each one has its own structure. Explicitly or implicitly, the sentence symbol E (or a node derived from it) has as children the nodes shown in the syntax tree. The input symbols are found as the leaves of the tree, and a traversal of these leaves recovers the given input sequence.

The parser attempts to build the syntax tree, bottom up, in the manner described in the last section. The parser returns the topmost symbol E, represented as an instance of a C# class called E.

6.3 The Parse function

The constructor for Parser has a YyParser object as parameter. This allows multiple instances of the Parser class to share a language definition. The ?.parser.cs file defines a subclass of YyParser.

The main function provided by the Parser class is Parse.

public SYMBOL Parse(StreamReader input) {

This returns a new instance of the sentence symbol, or null if the tree could not be built. The file should have been opened before Parser is called . There are alternatives which have CsReader and a string as parameter. In all cases, the parameter is passed to the Lexer, which constructs tokens from the input and supplies them to the Parser.
Parsing stops on an unrecovered error or when the null token is returned by the Lexer, which is treated by the Parser as an end-of-file indicator.
Lexer can of course return null earlier if the LexerGenerator script sets things up to do so.

It follows that a successful parse is one in which the start symbol is obtained by reducing the token stream generated by the Lexer from the given open file.

Ignoring debug and error conditions for the moment, and the code for extracting the sytax tree on a successful parse, the algorithm is quite simple:

SYMBOL Parse() {

ParserEntry pe;

SYMBOL newtop;

Create();

ParseStackEntry top = new ParseStackEntry(this,0,NextSym());

for (;;) {

string cnm = top.m_value.yyname();

if (top.m_value!=null && top.m_value.Pass(m_symbols,top.m_state, out pe))

pe.Pass(ref top);

else if (top.m_value==CSymbol.EOFSymbol) {

if (top.m_state==m_accept.m_state) { // successful parse

...

}

}

// not reached

}

Recall that the Parse function deals with the entire source file. Once the Parser and Lexer have been deserialised, and the stack has been initialised with the first symbol returned by the Lexer, the loop handles everything.

6.4 Actions in productions

ParserGenerator scripts support the inclusion of actions in productions. These are of two main kinds:

· simple actions occur at the end of a production to construct a node or symbol. The constructor may be specified by giving an action in curly brackets. The name of the left hand side of the production is supplied if the node to be constructed is not specified using the % notation before the action.

· old-style actions: where a code fragment in curly brackets earlier in the production right hand side without a preceding % name.

An old-style action can contain a return statement, returning a pointer to a newly created object of a class derived from the left-hand side of the production. If such a return statement is not executed, Parser will create an object of the correct class, and copy in the value of $$. As a special case, in an action occurring during a production (not at the end), if a type is provided for $$ using the yacc-style $<name>$ notation, an object of the class name is constructed.

Good C# style would use the return format, since this gives clearer control over the construction of the new object, and allows parameterised constructors to be used. The other variants are provided for compatibility reasons.

Both kinds of actions allow for C# statements to be executed. If the action is at the end of the production, the statements are executed when the production reduces. If the action is earlier in the production, it is passed (and carried out) if the next token in the input could follow the action.

Within the C# code for actions, there are certain members of the Parser class that may be useful, and are described in section 6.6. (These are not normally required.)

6.5 Error recovery

On discovering a syntax error, the parser generates the predefined symbol error . Error recovery is provided for in a parser script by including productions containing this symbol in their right hand side. The following example shows the mechanism in use (once again using 23.lexer):

%symbol Expression {

public int val;

}

%symbol Term : Expression;

%symbol Factor : Expression;

%start InputLine

InputLine :

| InputLine Assignment ';'

| InputLine Expression:a { System.Console.WriteLine(a.val); } ';'

| InputLine Expression error { System.Console.WriteLine("Semicolon expected"); }

| InputLine '\n'

;

Assignment: Variable:v '=' Expression:a

{ v.Value = a.val; }

;

Expression: Term:a { val = a.val; }

| '+' Term:a { val = a.val; }

| '-' Term:a { val = -a.val; }

| Expression:a '+' Term:b { val = a.val + b.val; }

| Expression:a '-' Term:b { val = a.val - b.val; }

;

Term : Factor:a { val = a.val; }

| Term:a '*' Factor:b { val = a.val * b.val ;}

| Term:a '/' Factor:b { val = a.val / b.val; }

;

Factor :
Variable:a

{ val = a.Value; }

|
Int:a

{ val = a; }

|
'(' Expression:a ')'

 { val = a.val; }

| error { System.Console.WriteLine("Factor expected"); val = 0; }

| '(' Expression:a error { System.Console.WriteLine(") expected"); val = a.val; }

;

Note that the actions in Factor following error are associated with the symbol Factor, so it is permitted (and desirable) to give a value for the val attribute of a Factor.

Error recovery takes place in two stages: first the parser reduces the stack until it gets back to a parser state in which the error symbol can be passed; then it discards input tokens until it finds one that can follow this error symbol. This is implemented in the Parser class's Error member function. If the error counter reaches 1000 error recovery is disabled: this is a rather crude way of avoiding infinite error recovery loops.
However, the syntax tree built following error recovery is likely to be unusable, so if the parsing engine reports success, but the errorhandler has recorded errors, the Parse() function returns an error symbol (recoveredError): its public field sym will contain the abstract syntax tree that resulted from the parse, but this is unlikely to be useful.

Note: A custom ErrorHandler could override this default behaviour by resetting the error counter.
An unrecovered syntax error will result in the Parse() function returning an error symbol, whose ToString() method (and public fields) provide diagnostic information, which can be checked against the parse table obtained using the –D flag as described in section 3.1.

Exceptions raised or caught in the tools are dealt with by an ErrorHandler class, which has a public int field called counter, and one method, Error, which takes a parameter of type CSToolsException. There is a public bool field called throwExceptions which allows the ErrorHandler to decide whether to throw the Exception in the case of a non-fatal error. The Error method by default prints the position information if any and the Message part of the Exception. You can derive your own subclass of ErrorHandler and override this (virtual) method, and supply an instance in your application when you instantiate the Lexer. With the default ErrorHandler, errors arising during lexer generation and parser generation cause the generators to exit, while exceptions raised during parsing are caught by the tools and merely print messages to the console.

Note: There is a custom errorhandler sample in erx.cs (see trx.bat) in the distribution.

Exceptions raised by the tools derive from the CSToolsException class. This contains the usual Message string, and four public fields: nExceptionNumber, described in Appendix E; slInfo, the SourceLineInfo about the error (see Appendix C9), and sInput, the input string. This class has subclasses CSToolsFatalException and CSToolsStopException.
6.6 Other support in the Parser class

Examining the rest of the Parser class in parser.cs, we see the following usable entries:

public class Parser

{

public YyParser m_symbols;

public bool m_debug;

public bool m_stkdebug=false;

public Parser(YyParser syms,Lexer lexer)

{

new Tfactory(lexer.m_tokens,"CSymbol",new TCreator(CSymbol_factory));

m_lexer = lexer;

m_symbols = syms;

}

public static object CSymbol_factory(Lexer yyl) { return new CSymbol(yyl); }

public Lexer m_lexer;

internal ObjectList m_stack = new ObjectList(); // ParseStackEntry

internal SYMBOL m_ungot;

…

protected bool Error(ref ParseStackEntry top, string str)

{

…

}

// The Parsing Algorithm

SYMBOL Parse()

{

…

}

internal void Push(ParseStackEntry elt)

{

m_stack.Add(elt);

}

internal void Pop(ref ParseStackEntry elt, int depth)

{

for (;m_stack.Count>0 && depth>0;depth--)

{

elt = (ParseStackEntry)m_stack[m_stack.Count-1];

m_stack.RemoveAt(m_stack.Count-1);

}

if (depth!=0)

{

Console.WriteLine("Pop failed");

Environment.Exit(-1);

}

}

public ParseStackEntry StackAt(int ix)

{

int n = m_stack.Count;

if (m_stkdebug)

Console.WriteLine("StackAt({0}),count {1}",ix,n);

ParseStackEntry pe =(ParseStackEntry)m_stack[n-ix];

if (pe == null)

return new ParseStackEntry(this,0,m_symbols.Special);

if (pe.m_value is Null)

return new ParseStackEntry(this,pe.m_state,null);

if (m_stkdebug)

Console.WriteLine(pe.m_value.yyname());

return pe;

}

public SYMBOL NextSym()

{ // like lexer.Next but allows a one-token pushback for reduce

SYMBOL ret = m_ungot;

if (ret != null)

{

m_ungot = null;

return ret;

}

ret = (SYMBOL)m_lexer.Next();

if (ret==null)

ret = m_symbols.EOFSymbol;

return ret;

}

public void Error(string s)

{

m_symbols.Error(s);

}

public void Error(SYMBOL sym, string s)

{

if (sym!=null)

m_symbols.erh.Error(new Exception(sym.yylx,sym.pos,s,””);

else

Error(s);

}

}

The constructor is used to recover the serialised data structures from the syntax file. The Parse function was discussed in section 6.3 above. The next few entries are for the internal operation of the parsing algorithm.

The StackAt function is used in the $N notation to recover the stack entry ix positions down from the top of the stack, so that $N uses StackAt(pos-N) where length is the position in the production where the action is executed.

SYMBOL *NextSym();
 // like lexer.Next & allows a one-token pushback for reduce

};

parser.NextSym() is similar to lexer.Next() except that it returns a SYMBOL instead of a TOKEN, and takes account of the one-token pushback that occurs when a production reduces.

6.7 The output file from pg
This consists of a number of sections, where we use the desk calculator example 34.parser from above:

· using System; using Tools;
· %symbol and %node definitions from the script

using System;using Tools;

//%+Expression+5

public class Expression : SYMBOL{

 public virtual int Value { get { return 0;

}

}

public override string yyname { get { return "Expression"; }}

public override int yynum { get { return 5; }}

public Expression(Parser yyp):base(yyp){}}

//%+Const+6

public class Const : Expression{

 public int m_val ;

 public Const (Parser yyp, int v):base(((syntax)yyp)){ m_val = v ;

}

 public override int Value { get { return m_val ;

}

}

public override string yyname { get { return "Const"; }}

public override int yynum { get { return 6; }}

public Const(Parser yyp):base(yyp){}} ..
· implied symbol definitions and extra subclasses defined to create the additional constructors:

public class InputLine : SYMBOL {

public InputLine(Parser yyq):base(yyq) { }

 public override string yyname { get { return "InputLine"; }}

 public override int yynum { get { return 15; }}}

public class Recall_1 : Recall {

 public Recall_1(Parser yyq):base(yyq,

((Variable)(yyq.StackAt(0).m_value))

){}}

public class Const_1 : Const {

 public Const_1(Parser yyq):base(yyq,

((Int)(yyq.StackAt(0).m_value))

){}} ..

· Definition of the syntax subclass of the Parser class. This contains the Action function:

public class yysyntax: YyParser {

 public override object Action(Parser yyq,SYMBOL yysym, int yyact) {

 switch(yyact) {

 case -1: break; //// keep compiler happy

case 1 : { Console.WriteLine(

((Expression)(yyq.StackAt(0).m_value))

.Value); } break;

} return null; }

· .. and the constructor which initialises the int array arr which contains the serialised form of the Parser’s data structures:

public yysyntax():base() { arr = new int[] {

101,4,6,52,0, ..
· ... and lists the class factories

new Sfactory(this,"InputLine_1",new SCreator(InputLine_1_factory));

new Sfactory(this,"InputLine_2",new SCreator(InputLine_2_factory)); .. }
· declares the class factory methods:

public static object InputLine_1_factory(Parser yyp) { return new InputLine_1(yyp); }

public static object InputLine_2_factory(Parser yyp) { return new InputLine_2(yyp); } ..

· declares the syntax class:

public class syntax: Parser {

public syntax():base(new yysyntax(),new tokens()) {}

public syntax(YyParser syms):base(syms,new tokens()) {}

public syntax(YyParser syms,ErrorHandler erh):base(syms,new tokens(erh)) {}

 }

That’s the end of the output file.

Part 3: How the Tools process their scripts

Inevitably there is a temptation to use some element of bootstrapping, for example, to get ParserGenerator to generate a Parser for itself. What is done in this implementation is to get LexerGenerator to generate a Lexer for ParserGenerator to use: this uses the script pg.lexer.

In addition, there are cs0.lexer and cs0.parser: these define enough of the C# language to do a lot of the work of handling class definitions in lexer and parser scripts. They are called by genbase.cs: early stages of the tool-building process use a cut-down version genbase0.cs which does not support the full %token and %symbol declarations.
The CsReader class contains a finite state automaton for stripping out comments. It would have been a neat trick to use the tools to create this, but would lead to an even more complicated rebuild procedure for the tools, and most importantly would prevent the use of comments in the bootstrap lexer pg.lexer.
In order to allow multiple languages and multiple parsers/lexers in the one application, static data is now avoided in classes. Lexers refer to a YyLexer class, and Parsers refer to a YyParser class; so that what LexerGenerator and ParserGenerator do is to create subclasses of the YyLexer and YyParser classes, which are immutable during lexing and parsing.
Also, to reduce the size of Tools.dll, most of the functionality of LexerGenerator and ParserGenerator is kept out of Tools.dll, leaving only their base classes TokensGen and SymbolsGen. This has a slight impact on readability of the sources, so that almost all constructors have to be given one of these base classes as context.
This design also unfortunately greatly increases the number of classes and fields that must be declared public.

Chapter 7: How LexerGenerator Works

Most of the Lexer data structures build themselves directly in their constructors. For example, the Regex constructor Regex(string str) constructs a Regex data structure from a string containing a regular expression. It is possible to perform string matching using the Regex structure directly, but it is a rather slow backtracking process: details are included in this chapter for interest’s sake. It amounts to a non-determintsic finite-state automaton (NFA).

The Nfa class implements a data structure that explains what the direct Regex lexing is doing: by abuse of language we call this data structure the NFA. Nfa has a constructor Nfa(TokensGen tks, Regex re) which builds an NFA from a given regular expression; a related one, Nfa(Regex re,Nfa nfa) allows a regular expression to be added to an existing NFA. We need this second function because our lexical analyser is built using a number of regular expressions, not just one.

The NFA to DFA construction is also handled by a constructor. Dfa has Dfa(Nfa nfa) which does the required build.

Finally, Lexer contains a DFA to do its parsing for it. In LexerGenerator, a function Create() exists with two string parameters, which reads the script file (whose name is given by the first parameter), and among other things constructs the DFA using the above steps. LexerGenerator then serialises the Lexer to an integer array, which is placed in the output file which is named using the second parameter, and is normally tokens.cpp.

7.1 The Regular Expression class Regex

This is defined in dfa.cs, as a recursive structure whose nodes are all derived from Regex. Thus a pointer to a Regex gives the starting node of the regular expression structure. It is possible to match directly (using a non-deterministic algorithm) using a Regex: we describe the algorithm in section 7.3.

internal class Regex

{

public Regex(TokensGen tks, string str) {

...

}

protected Regex() {} // private

public Regex m_sub;

public virtual void Print() {

if (m_sub!=null)

m_sub.Print();

}

// Match(ch) is used only in arc handling for ReRange and ReDot

public virtual bool Match(int ch) { return false; }

public int Match(string str) {

return Match(str,0,str.Length);

}

public virtual int Match(string str,int pos,int max) {

if (max<0)

return -1;

if (m_sub!=null)

return m_sub.Match(str,pos,max);

return 0;

}

public virtual void Build(Nfa nfa) {

if (m_sub!=null) {

Nfa sub = new Nfa(nfa.m_tks,m_sub);

nfa.AddEps(sub);

sub.m_end.AddEps(nfa.m_end);

} else

nfa.AddEps(nfa.m_end);

}

}

Note that:

(a) This contains a Regex m_sub. This is re-used for various purposes in the derived classes, so is simply safely initialised to 0 in the default constructor which they will use by default.

(b) The only public constructor is the one that will build an entire data structure from the given string.

(c) There is a Print() function for displaying the data structure.

(d) There are Match() and Build() functions that are used for building an NFA out of the regular expression.

Internal class ReThing : public Regex

{

public ReThing(...) { ... }

...

public override void Print();

public override Build(Nfa nfa); // and maybe bool Match(int ch) {...}

};

	Node class
	Extra Fields
	Meaning

	ReAlt
	Regex m_alt
	sub | alt

	ReCat
	Regex m_next
	sub next

	ReStr
	string m_str
	"str"

	ReUStr
	string m_str
	U"str"

	ReRange
	byte[] m_bits
	[set]

	ReOpt
	
	sub?

	RePlus
	
	sub+

	ReStar
	
	sub*

For example, if you declare CRegex re("_?[A-Za-z]+") the resulting data structure would be

regex:

7.2 The constructor Regex(.., string str)

The code is in dfa.cs. This is possibly the most inelegant piece of code in the sources of these tools.

The following describes the code approximately. In all steps, if we prematurely reach the end of the string, the regular expression is bad.

1. First examine the given string. If it is empty, there is nothing to do, so return (having cleared m_sub as a precaution).

2. Look to see if the string begins with a bracket (. If so, find the matching) . This is not as simple as it might be because)s inside quotes or [] or escaped will not count.

Recursively call the constructor for the regular expression between the () s. Mark everything up to the) as used, and go to step 10.

3. Look to see if the string begins with a bracket [. If so, find the matching] , watching for escapes.

Construct a CReRange for everything between the []s. Mark everything up to the] as used, and go to step 9.

4. Look to see if the string begins with a ' or " . If so, build the contents interpreting escaped special characters correctly, until the matching quote is reached. Construct a ReStr for the contents, mark everything up to the final quote as used, and go to step 10.

5. Look to see if the string begins with a U' or U" . If so, build the contents interpreting escaped special characters correctly, until the matching quote is reached. Construct a ReUStr for the contents, mark everything up to the final quote as used, and go to step 10.

6. Look to see if the string begins with a \ . If so, build a ReStr for the next character, mark it as used, and go to step 10.

7. Look to see if the string begins with a { . If so, find the matching }, lookup the symbolic name in the definitions table, recursively call this constructor on the contents, mark everything up to the } as used, and go to step 10.

8. Look to see if the string begins with a dot. If so, deal with it as [^\n], mark the . as used, and go to step 10.

9. At this point we conclude that there is a simple character at the start of the regular expression. Construct a ReStr for it, mark it as used, and go to step 10.

10. If the string is exhausted, return. We have a simple Regex whose m_sub contains what we can constructed.

11. If the next character is a ? , *, or +, construct a ReOpt, ReStart, or RePlus respectively out of m_sub, and make m_sub point to this new class instead. Mark the character as used.

12. If the string is exhausted, return.

13. If the next character is a | , build a ReAlt using the m_sub we have and the rest of the string.

14. Otherwise build a ReCat using the m_sub we have and the rest of the string.

7.3 A non-deterministic Match algorithm for Regex

The following section is not relevant to the tools and can be skipped. It is included for its "hack value", and readers who have not seen many non-deterministic algorithms may be interested in the code.

At first sight it is not clear that matching with a regular expression is non-deterministic. After all, it is very straightforward to match a given string, or decide whether a character is in a given range. The problem arises with optional or iterative elements that could be part of something else. For example, in matching the regular expression a*abc with the input "aaabc" it is important not to use up all three a's in the a* .

One way of handling this is to specify a maximum permitted length when looking for a match. This can be initially set to a large number (the length of the string). The first time this is called for the a* in the above example, a* matches 3 characters. Using these, the rest of the regular expression fails to match. So repeat the process, but only allowing the a* to match at most 2, and try again: this time the match succeeds.

You will see this simple idea being used in the following code, and not surprisingly the only really tricky case ReCat, which is where we need to decide how to partition the string between the two parts of the regular expression.

Add a virtual function Match to the Regex class, and declare it in each of the derived node types:

Internal class Regex { ...

public int Match(string str) {

return Match(str,0,str.Length);

}

public virtual int Match(string str,int pos,int max) {

if (max<0)

return -1;

if (m_sub!=null)

return m_sub.Match(str,pos,max);

return 0;

}

}

internal class ReThing : Regex

{

...

public override int Match(string str, int pos, int max) { ...

}

}

Implement it as follows:

	Regex
	If max is negative, report failure by returning -1

If there is a subexpression, return the result of calling Match on it.

Otherwise, return 0: a successful match using no characters.

	ReAlt
	Call Match on m_sub and m_alt (with the given max in both cases). Return the greater of the two resulting lengths.

	ReCat
	1. If there is no m_next, use the default above. If there is no m_sub, call Match on m_next, and return.

2. Try using different lengths for the first part (m_sub), starting with max:

3. If a Match succeeds on the first part (using a characters), then try to succeed with the rest of the characters on the second part. Keep a record of the longest combined match found.

4. Repeat step 3 using less than a characters for the first part; unless this is zero.

5. Report the longest match we found.

The code for steps 2-5 may be helpful here:

int first, a, b r = -1;

for (first = max;first>=0;first=a-1) {

a = m_sub.Match(str,pos,first);

if (a<0)

break;

b = m_next.Match(str,pos+a,max);

if (b<0)

continue;

if (a+b>r)

r = a+b;

}

return r;

	ReStr
	If m_str is longer than max or the length of the given string, report failure.

Check for a characterwise match of the strings.

	ReUStr
	If m_str is longer than max or the length of the given string, report failure.

Check for a case-insensitive characterwise match of the strings.

	ReRange
	If max is less than 1, report failure.

Succeed in matching 1 character if the character is in the desired set. ReRange contains a hashtable for the set of characters described, and a flag indicating whether the matched character should be in this subset or its complement (the ^ operator in the regular expression).

	ReOpt
	Try matching m_sub: if this succeeds, return the length of the match obtained.

Otherwise report 0: a successful match using no characters.

	RePlus
	Try matching m_sub: if this fails, report the failure.

Maintain a record of the number of characters matched so far, and repeatedly try matching m_sub for the rest of the string, reducing max by the number of characters matched, until the match fails.

Return the number of characters matched up to the last successful match.

	ReStar
	Maintain a record of the number of characters matched so far, and repeatedly try matching m_sub for the rest of the string, reducing max by the number of characters matched, until the match fails.

Return the number of characters matched up to the last successful match.

No doubt some readers will feel this algorithm actually looks quite "deterministic". There is a difference in computing between heuristics, which might help but are not guaranteed to exhaust the possibilities, and non-deterministic algorithms (NDA), which can be guaranteed to exhaust the possibilities, but do so using backtracking. The non-determinism is in the decisions that need to be made along the way. In a deterministic algorithm each time a decision needs to be made, we have the data necessary to decide what to do. With NDA we are unable to take that sort of decision and are obliged to explore all the possibilities.

Consider running a maze: we need to ensure we can undo any move we make; then each time there is a decision to be made we can try all the branches in a systematic way. When we reach a dead end, we go back to the last decision point that still has unexplored possibilities, and try the next one. This is a classic NDA, and the above CRegex algorithm follows this pattern.

It is unacceptably slow in practice to use NDAs, and so the LexerGenerator computes an equivalent deterministic mechanism for the given set of regular expressions. The first stage is to make the routes through the maze explicit, by constructing a set of states and transitions, where the transitions use up characters from the input. We do this in the next section. Then by considering the effect of having particular inputs, we can arrive at a deterministic algorithm, using the construction given in section 8.9.

7.4 NFA recognisers

An NFA is represented as a network with a start and end node, and nodes are connected up using directed arcs, which may be labelled with a character. The nodes represent states of the NFA, and we can change state along an unlabelled arc, or use the current input character to move along an arc labelled with that character.

(Exercise: what regular expression is equivalent to this NFA?)

A non-deterministic algorithm could be easily written to traverse an NFA.

NFAs can be built from other NFAs. We can abbreviate a whole NFA by thinking of its beginning and end state and something in the middle:

7.5 The Nfa class

The code is in dfa.cs. As in the above diagram, the NFA has two NFA nodes for its beginning and end. NFA nodes are numbered and can be connected using labelled and unlabelled arcs.

We implement these ideas in stages. We already met the numbered node class LNode in section 5.2.

internal class NfaNode : LNode

{

public string m_sTerminal = ""; // or something for the Lexer

public ObjectList m_arcs = new ObjectList(); // of Arc for labelled arcs

public ObjectList m_eps = new ObjectList(); // of NfaNode for unlabelled arcs

public NfaNode(TokensGen tks}:base(tks){)

// build helpers

public void AddArc(char ch,NfaNode next) {

m_arcs.Add(new Arc(ch,next));

}

public void AddArcEx(Regex re,NfaNode next) {

m_arcs.Add(new ArcEx(re,next));

}

public void AddEps(NfaNode next) {

m_eps.Add(next);

}

// helper for building DFa

public void AddTarget(char ch, Dfa next) {

for (int j=0; j<m_arcs.Count; j++) {

Arc a = (Arc)m_arcs[j];

if (a.Match(ch))

next.AddNfaNode(a.m_next);

}

}

}
An arc may have a label, and a destination: there is no need to record its source, because the only way we can get to it is via the source NfaNode.

internal class Arc

{

public int m_ch;

public NfaNode m_next;

public Arc() {}

public Arc(int ch, NfaNode next) { m_ch=ch; m_next=next; }

public virtual bool Match(int ch) {

return ch==m_ch;

}

public virtual void Print(TextWriter s) {

s.WriteLine(String.Format(" {0} {1}",m_ch,m_next.m_state));

}

}

For handling ReRanges it is useful to allow an arc to be labelled with one of these regular expressions too.

internal class ArcEx : Arc

{

public ReRange m_ref; // used for ReRange and ReDot only

public ArcEx(ReRange re,NfaNode next) { m_ref=re; m_next=next; }

public override bool Match(int ch) {

return m_ref.Match(ch);

}

public override void Print(TextWriter s) {

Console.Write(" ");

m_ref.Print(s);

Console.WriteLine(m_next.m_state);

}

}

With these classes, we can now declare the Nfa class. An NFA is normally thought of as defined by a start and end state, but here we derive the Nfa from a NfaNode which acts as the start state. We ensure that it has an end state in the constructors.

internal class Nfa : NfaNode

{

public NfaNode m_end;

public Nfa(TokensGen tks) :base(tks) {

m_end = new NfaNode(m_tks);

}

// build an NFA for a given regular expression

public Nfa(TokensGen tks,Regex re) : base(tks) {

m_end = new NfaNode(tks);

re.Build(this);

}

}

The first constructor here is the promised one that builds an NFA automatically from a regular expression. We do this by delegating to the Regex class.

7.6 Building the NFA

The work is actually done by the Regex class, using the Build virtual function, and a number of helper functions in the NfaNode class.

internal class Regex

{

...

public virtual void Build(Nfa nfa) {

if (m_sub!=null) {

Nfa sub = new Nfa(nfa.m_tks,m_sub);

nfa.AddEps(sub);

sub.m_end.AddEps(nfa.m_end);

} else

nfa.AddEps(nfa.m_end);

}

}

Then the construction process works in the following way:

	Regex
	
	
if (m_sub!=null) {

Nfa sub = new Nfa(..,m_sub);

nfa.AddEps(sub);

sub.m_end.AddEps(nfa.m_end);

} else

nfa.AddEps(nfa.m_end);

	ReAlt
	
	

if (m_alt!=null) {

Nfa alt = new Nfa(..,m_alt);

nfa.AddEps(alt);

alt.m_end.AddEps(nfa.m_end);

}

base.Build(nfa);

	ReCat
	
	

if (m_next!=null) {

if (m_sub!=null) {

Nfa first = new Nfa(..,m_sub);

Nfa second = new Nfa(..,m_next);

nfa.AddEps(first);

first.m_end.AddEps(second);

second.m_end.AddEps(nfa.m_end);

} else

m_next.Build(nfa);

} else

base.Build(nfa);

	ReStr
	
	

int j,n = m_str.Length;

NfaNode p, pp = nfa;

for (j=0;j<n;pp = p,j++) {

p = new NfaNode(..);

pp.AddArc(m_str[j],p);

}

pp.AddEps(nfa.m_end);

	ReUStr
	
	

int j,n = m_str.Length;

NfaNode p, pp = nfa;

for (j=0;j<n;pp = p,j++) {

p = new NfaNode(..);

pp.AddUArc(m_str[j],p);

}

pp.AddEps(nfa.m_end);

	ReCategory
	
	nfa.AddArcEx(this,nfa.m_end);

	ReRange
	
	

nfa.AddArcEx(this,nfa.m_end);

	ReOpt
	
	

nfa.AddEps(nfa.m_end);

base.Build(nfa);

	RePlus
	
	

base.Build(nfa);

nfa.m_end.AddEps(nfa);

	ReStar
	
	

Nfa sub = new Nfa(..,m_sub);

nfa.AddEps(sub);

nfa.AddEps(nfa.m_end);

sub.m_end.AddEps(nfa);

7.7 Reading the LexerGenerator script

In fact, the NFA that is used to create Lexer's DFA is constructed not just from one regular expression, but from all of the regular expressions in the LexerGenerator script. How these are put together is dealt with in this section.

TokensGen is the skeletal base class for LexerGenerate:

public abstract class TokensGen : GenBase

{

protected bool m_showDfa;

public YyLexer m_tokens; // the YyLexer class under construction

// %defines in script

public Hashtable defines = new Hashtable(); // string->string

// support for Nfa networks

int state = 0;

public int NewState() { return ++state; } // for LNodes

public ObjectList states = new ObjectList(); // Dfa

}

GenBase is common to LexerGenerate and ParserGenerate: it contains a routine, EmitClassDefinition for dealing with %symbol, %token, and %node directives, and some utility functions for handling whitespace and multiline actions. In fact, since these directives can define C# classes, EmitClassDefinition became unreasonably messy, and so genbase.cs comes in two flavours: genbase0.cs, which supports only a minimal very restricted sort of class directive, and genbase.cs, which uses its own private Lexer and Parser to sort them out.

The script toolcs.bat that builds the tools from the sources therefore starts by using genbase0.cs in a build of a preliminary version of Tools.dll. This is used to build a preliminary version of lg and pg, which are used to compile the classdefinition language defined by cs0.lexer and cs0.parser. The resulting tokens and syntax files are used together with genbase.cs to build the full version of Tools.dll.

The LexerGenerate class, in lg.cs, contains the following functions:

public class LexerGenerate : TokensGen
{

public bool m_lexerseen = false;

string m_basename; // base name of output file: usually "tokens"

CsReader m_inFile; // the input script

StreamWriter m_outFile; // the generated tokens.cs

Hashtable m_actions = new Hashtable(); // int -> NfaNode

Hashtable m_startstates = new Hashtable(); // string -> NfaNode

string m_actvars = "";

bool m_namespace = false;

LineManager m_LineManager = new LineManager();

bool OpenFiles(string fname,string bas) {...}

void CopyCode() { ...}

void GetRegex(string b, ref int p,int max) { ... }

string NewConstructor(TokClassDef pT, string str) { ... }

public void Create(string fname,string bas) {

...

if (!OpenFiles(fname,bas))

return;

while (!m_inFile.Eof()) {

...

if (!White(buf,ref p,max))

continue;

if (buf[p]=='%') { // directive

...

continue;

} else if (buf[p]=='<') { // startstate

...

}

q=p; // can't simply look for nonwhite space here because embedded spaces

GetRegex(buf,ref p,max);

Regex rgx = new Regex(buf.Substring(q,p-q));

Nfa nfa1= new Nfa(rgx);

if (!m_startstates.Contains(startsym))

m_startstates[startsym] = new Nfa();

nfa = (Nfa)m_startstates[startsym];

nfa.AddEps(nfa1);

...

// handle multiline actions enclosed in {}

...

// examine action string

...

}

Console.WriteLine("Constructing DFAs"); Console.Out.Flush();

IDictionaryEnumerator de = m_startstates.GetEnumerator();

for (int pos=0;pos<m_startstates.Count;pos++) {

de.MoveNext();

string s = (string)de.Key;

Dfa d = new Dfa((Nfa)m_startstates[s]);

m_starts[s] = d;

if (d.m_actions!=null)

Console.WriteLine("Warning: This lexer script generates an infinite token stream on bad input");

}

Console.WriteLine("Output phase"); Console.Out.Flush();

Emit();

Console.WriteLine("End of Create"); Console.Out.Flush();

if (((Dfa)(m_starts["YYINITIAL"])).m_actions!=null) // repeat the above warning

Console.WriteLine("Warning: This lexer script generates an infinite token stream on bad input");

}

void Emit() { ... }

...

}

The public interface that LexerGenerator uses declares the LexerGenerate object and calls Create, which is the main driver for the LexerGenerator mechanism. There are actually several versions of Create. It is in lg.cs, and has the following pseudocode desription:

1. Declare a new empty NFA, called nfa. Open the files, and write out the standard parts of tokens.h and tokens.cpp.

2. Read a line from the script file. Because the file class is CsReader, comments are automatically removed. If there are no more lines in the script, go to step 9.

3. Strip the trailing newline if present. Skip over white space at the start of the line. If the line is now empty, go to step 2.

4. If the line begins with %, deal with the directive, and then goto step 2.

4.1 %lexer is for file type identification.

4.2 For %define, skip white space, collect the symbolic name, skip white space, and place the rest of the string in the m_defines map.

4.3 For %token, call the helper function EmitClassDefin to generate the output for the class information.

4.4 For %{, call the helper function CopyCode.

5. The line must contain a regular expression and possibly an action definition. Look for the white space at the end of the regular expression, and null-terminate it.

6. Construct a Regex for the regular expression, and add it to Lexer's list of regular expressions.

7. Construct a corresponding NFA child of Lexer's NFA, and attach it with an unlabelled arc.

8. Collect the action string if any and associate it with the new NFA child's end state. Goto step 2.

9. The Lexer's NFA now contains all the script's regular expressions. Build the associated DFA, and now delete the list of regular expressions (we needed to keep them till now because ArcEx::Match uses them).

10. Emit the Lexer in its coded form.

7.8 From NFA to DFA

The constructor that builds the DFA from the NFA is described next. The algorithm is a good example of the subset construction, also known as partial evaluation:

(a) States in the DFA will be subsets of the set of NFA states that are closed under epsilon-transitions (unlabelled arcs), that is if NFA state n is in DFA state d, then so is even NFA state that can be reached from n by an epsilon transition.

(b) The starting state of the DFA will be the subset consisting of the closure of {0} where 0 is the starting state of the NFA.

(c) For each possible input character x, and DFA state d, construct the subset S of NFA states which are reached from an NFA state in d by following an arc labelled by x. Then the closure of S will be a new DFA state d', and there will be an arc from d to d' labelled by x.

The Dfa class was introduced in Chapter 5. The relevant constructor code is in dfa.cs. It works as follows: for point (a), there is a list m_nfa of NFA states associated with each Dfa object, and a function called Closure that adds additional NFA states as required. For point (b), the Constructor we want should have code like this:

AddNfaNode(nfa); // the starting node is Closure(start)

Closure();

AddActions(); // recursively build the Dfa

to construct the starting state. Finally, point (c) adds "actions" to a DFA state, and as a side effect, constructs a new DFA state. We set things up so that calling the AddActions function from the constructor builds the entire DFA.

First we give the implementation of the Closure function: this traverses the list of NFA states, calling ClosureAdd for each.

void Closure() {

for (NList pos=m_nfa; !pos.AtEnd; pos=pos.m_next)

ClosureAdd(pos.m_node);

}
ClosureAdd traverses the epsilon-transitions

void ClosureAdd(NfaNode nfa) {

for (int pos=0;pos<nfa.m_eps.Count;pos++) {

NfaNode p = (NfaNode)nfa.m_eps[pos];

if (AddNfaNode(p))

ClosureAdd(p);

}

}
to add the relevant NFA node. Notice the recursive call of ClosureAdd here. AddNfaNode returns true if the NfaNode was not there already, that is, it has actually been added just now, and in this case we need to recurse to add the nodes it is connected to by epsilon-transitions.

internal bool AddNfaNode(NfaNode nfa) {

if (!m_nfa.Add(nfa))

return false;

...

return true;

}
The dots here hide the details of how terminal states are handled: we return to that later. With this implementation some nodes will be traversed more than once, but this does not matter here.

Now consider how AddActions works. To save storage space, the arcs from a DFA state are stored in map, indexed by characters. AddActions is called once we are sure we are dealing with a DFA state (subset of NFA states) that we have not seen before, so this is a good time to add the new DFA state to Lexer's list of states (there for housekeeping purposes). Otherwise, we simply consider all possible characters and for each look at the resulting DFA state.

internal void AddActions() {

// This routine is called for a new DFA node

states.Add(this);

// Follow all the arcs from here

for (int j=1; j<128; j++) {

Dfa dfa = Target(j);

if (dfa!=null)

m_map[j] = dfa;

}

}
The last bit merely records the arc to a new DFA state. That leaves Target. The complication here is that we must check that the DFA state we get is not one we have had before.

internal Dfa Target(int ch) { // construct or lookup the target for a new arc

Dfa n = new Dfa();

for (NList pos = m_nfa; !pos.AtEnd; pos=pos.m_next)

pos.m_node.AddTarget(ch,n);

// check we actually got something

if (n.m_nfa.AtEnd)

return null;

n.Closure();

// now check we haven't got it already

for (int pos1=0;pos1<states.Count;pos1++)

if (((Dfa)states[pos1]).SameAs(n))

return (Dfa)states[pos1];

// this is a brand new Dfa node so recursively build it

n.AddActions();

return n;

}

internal bool SameAs(Dfa dfa) {

NList pos1 = m_nfa;

NList pos2 = dfa.m_nfa;

while (pos1.m_node==pos2.m_node && !pos1.AtEnd) {

pos1 = pos1.m_next;

pos2 = pos2.m_next;

}

return pos1.m_node==pos2.m_node;

}

The following helper function in nfanode.cpp is used:

public void AddTarget(int ch, Dfa next) {

for (int j=0; j<m_arcs.Count; j++) {

Arc a = (Arc)m_arcs[j];

if (a.Match(ch))

next.AddNfaNode(a.m_next);

}

}
7.9 Terminal states in the DFA

That is almost all that LexerGenerator needs to do. The handling of terminal states in the DFA is where we deal with the actions and special actions in the LexerGenerator script. Recall that in the NFA these were recorded as strings.

One subtlety here is that we need to handle conflict resolution. The Match algorithm will automatically select the longest match, so all we need to do here is to check that where there are matches of equal length, we take the action that is earliest in the script. This is made easy by the fact that m_state numbers in LNode are allocated sequentially, so we simply test for which m_state number is less.

In addition we may have TokenClass-style special actions to consider.

Finally, this implementation supports the old lex-style REJECT action. REJECT is an executable keyword inside old-style lexer actions, which forces the lexer to ignore the given terminal action, and backtrack (yes…) to take whatever action would occur if this rule was not in the lexer.

This is handled in the following rather complicated way. First, old-style actions are held in a list called m_actions, in ascending order of their m_state, which is the same as the order of their occurrence in the lexer script. Second, if there is a special action, its name is in m_tokClass: it is always the last action in m_actions, since special actions do not have REJECT.

internal bool AddNfaNode(NfaNode nfa) {

if (!m_nfa.Add(nfa))

return false;

if (nfa.m_sTerminal!="") {

int qi,n;

string tokClass = "";

string p=nfa.m_sTerminal;

if (p[0]=='%') { // check for %Tokname special action

for (n=0,qi=1;qi<p.Length;qi++,n++) // extract the class name

if (p[qi]==' '||p[qi]=='\t'||p[qi]=='\n'||p[qi]=='{'||p[qi]==':')

break;

tokClass = nfa.m_sTerminal.Substring(1,n);

}

// special action is always last in the list

if (tokClass=="") { //nfa has an old action

if (m_tokClass=="" // if both are old-style

|| // or we have a special action that is later

(m_actions.a_act)>nfa.m_state) // m_actions has at least one entry

AddAction(nfa.m_state);

// else we have a higher-precedence special action so we do nothing

} else if (m_actions==null || m_actions.a_act>nfa.m_state) {

MakeLastAction(nfa.m_state);

m_tokClass = tokClass;

} // else we have a higher-precedence special action so we do nothing

}

return true;

}
7.10 Serialisation of the Lexer

The only remaining task of LexerGenerator is to get the YyLexer class to emit the Lexer into a serialised form in the arr array., and generate the output file containing the rest of the new subclass of YyLexer.
So in YyLexer we have

public void EmitDfa(TextWriter outFile)

{

Console.WriteLine("Serializing the lexer");

Serialiser f = new Serialiser(outFile);

f.Serialise(m_encoding);

f.Serialise(toupper);

f.Serialise(cats);

f.Serialise(m_gencat);

f.Serialise(usingEOF);

f.Serialise(starts);

f.Serialise(tokens);

outFile.WriteLine("0};");

}

while in LexerGenerate we have

void Emit(. . .) {

if (m_showDfa) {

for (int j=0;j<Dfa.states.Count; j++)

((Dfa)states[j]).Print();

}

Console.WriteLine("Serializing the lexer");

m_outFile.WriteLine("public class "+m_basename+" : YyLexer {");

m_outFile.WriteLine(" public "+m_basename+"() { arr = new byte[] { ");

m_tokens.EmitDfa(m_outFile);

IDictionaryEnumerator keys = TokClassDef.tokens.GetEnumerator();;

for (int i=0;i<TokClassDef.tokens.Count; i++) {

keys.MoveNext();

m_outFile.WriteLine(" new factory(\""+keys.Key+"\",new Creator("+keys.Key+"_factory));");

}

m_outFile.WriteLine("}");

keys.Reset();

for (int i=0;i<TokClassDef.tokens.Count; i++) {

keys.MoveNext();

m_outFile.WriteLine("public static object "+keys.Key+"_factory(Lexer yyl) { return new "+keys.Key+"(yyl);}");

}

Console.WriteLine("Actions function");

m_outFile.WriteLine(m_actvars);

m_outFile.WriteLine("public override TOKEN OldAction(Lexer yyl,ref string yytext,int action, ref bool reject) {");

m_outFile.WriteLine(" switch(action) {");

m_outFile.WriteLine(" case -1: break;");

IDictionaryEnumerator pos = m_actions.GetEnumerator();

for (int m=0;m<m_actions.Count;m++) {

pos.MoveNext();

int act = (int)pos.Key;

NfaNode e = (NfaNode)pos.Value;

if (e.m_sTerminal.Length!=0 && e.m_sTerminal[0]=='%') // auto token action

continue;

m_outFile.WriteLine(" case {0}: {1}",act,e.m_sTerminal);

m_outFile.WriteLine(" break;"); // in case m_sTerminal ends with a // comment (quite likely)

}

m_outFile.WriteLine(" }");

m_outFile.WriteLine(" return null;");

m_outFile.WriteLine("}}");

if (m_namespace)

m_outFile.WriteLine("}");

m_outFile.Close();

}
This completes the discussion of how LexerGenerator works.

Chapter 8: How ParserGenerator works

ParserGenerator reads the given %parser script, and constructs the parse table for the given grammar. This parse table is then coded into the output file ?.parser.cs which gives the YyParser object needed for the compiler.

The notation used for productions is basically the same as in yacc, the only difference being that actions (normally fragments of C code in curly brackets) can also take the form %Name, where Name is the name of a C# class associated with a grammar symbol. Yacc produced files called y.tab.c and optionally y.tab.h, and a function yyparse().

However, there is an important difference. ParserGenerator examines the token classes defined in the given tokensfile automatically, to check that the files are compatible.

ParserGenerator uses a Lexer to process the script, so has its own LexerGenerator script, called pg.lexer . This is discussed in section 8.4.

From version 4.1 of these tools, ParserGenerator uses the LALR(1) construction algorithm described in F. DeRemer and T. Pennello’s classic paper “Efficient Computation of LALR(1) Look-Ahead Sets”, ACM Transactions on Programming Languages and Systems 4 (1982) p.615-649. The method starts by constructing a basic LR automaton, as described in sections 8.1-8.12. Then DeRemer and Pennello’s machinery is used to calculate the Follow sets for each possible state transition in order to improve the table – see section 8.13. Then precedence rules are used to create the final Parser.
They define a context-free grammar (CFG) as a quadruple G=<T,N,S,P> where T is a finite set of terminal symbols, here represented by the CSymbols provided by the Lexer, N is a finite set of non-terminal symbols, such that T (N = (, S (N is the start symbol, m_symbols.m_startSymbol, and P is a finite subset of N (V*, where V=T (N, here represented by the instances of class CSymbol (tokens found in the parser script). Each member p=(A,() of P is called a production, an instance of the class Production, written A((. A is called the left part, p.m_lhs, and (the right part (the ObjectList p.m_rhs).

We require a production S’(S(for some S’ (N and ((T such that (and S’ appear in no other production. The following (usual) conventions hold in the paper:

S,A,B,C,.. (N

X (V

t,a,b,c,.. (T

…, x,y,z (T* (sequences of TOKENs)

(,(,(,.. (V* (sequences of SYMBOLs)

The relation (r is pronounced “directly (right) produces” and is defined on V* such that (Ay(r ((y for all ((V*, y(T*, and A(((P. The r subscript is dropped hereafter since we always mean right produces. Both (* and (+ are pronounced “produces”. A nullable nonterminal is one that produces ((the empty sequence) and this is represented in ParserGenerator’s code by the method CouldBeEmpty(). If S (* (, then (is called a sentential form; if ((T*, then it is called a sentence. The language L(G) generated by G is the set of sentences, that is { x (T* | S (+ x }. All grammars here are assumed to be reduced, that is, S(+ (A(and A (* y for all A (N and some (, ((V* and y (T*.

Let G be a CFG and k (0. G is LR(k) iff S (* (Ay (((y’ implies that, if S (* ((((y’ , then (= (Ay’ for all (, ((V* and y, y’ (T* such that Firstk(y’) = Firstk(y) . Here Firstk(y) is the prefix of y of length k, or just y if |y|<k .
8.1 Parse Tables

The heart of an LR parser is the parse table. To take an extremely simple example, consider the grammar

Variable = Ident | Variable “.” Ident | Ident “::” Variable .

Then the standard LR parsing table proceeds as follows. Separate out the alternatives into different productions, and number them 1 to 3. Add as production 0

S’ = Variable (.

where (denotes the end of the file. The parse will proceed from left to right. Whenever we have a complete right-hand side we will reduce it to the corresponding left-hand side. At other times the parse will be part way through a number of right-hand sides: we itemise these different intermediate states ("production items") here by calling them e.g. 2a, 2b, 2c. Then the parse table says what happens when we pass a token, or a non-terminal symbol: these are called the Actions.

If the parse is at just before a non-terminal symbol A in some right-hand side, then the current state should include all the starting states for A, that is, the first items for all productions for which A is the left-hand side. This is called Closure.

The construction method now says: the starting state is the Closure of item 0a. At each state, form the closure of states that we reach by passing over the next symbol in each of the items in the state. For the example this gives

	State
	Ident
	.
	::
	(
	Variable
	Production Items

	0:
	s2
	
	
	
	g1
	0a 1a 2a 3a

	1:
	
	s3
	
	accept
	
	0b 2b

	2:
	r1
	r1
	s4
	r1
	
	1r 3b

	3:
	s5
	
	
	
	
	2c

	4:
	s2
	
	
	
	g6
	3c 1a 2a 3a

	5:
	r2
	r2
	r2
	r2
	
	2r

	6:
	r3
	s3
	r3
	r3
	
	3r 2b

resolving the shift-reduce conflicts in favour of shift as usual. An entry like s2 in this table is read as "shift to state 2:", g6 is "go to state 6:", while r2 is read "reduce using production 2".

An LR automaton for a CFG G = <T,N,S,P> is a sextuple LRA(G) = <K,V,P,Start,Next,Reduce>, where K is a finite set of states (instances of ParseState, each with a distinctive integer m_state), V and P are as above, Start (the parseState start) (K is the start state, Next: K (V (K is called the transition function, and Reduce: K (T (2P is called the reduce function. Next may be a partial function. Nondeterministic or “inconsistent” LR automata are allowed, where a state q is inconsistent if for some t Next(q,t) is defined but Reduce(q,t)((and/or if for some t |Reduce(q,t)|>1. The LALR(1) condition excludes such cases.
In these tools these functions are implemented in the generated parser as a Hashtable which for the relevant CSymbol (element of V or T) map from m_state (representing an element of K). For Next this gives a ParserShift, and for Reduce it gives an ArrayList of ParserReduce. Both ParserShift and ParserReduce are subclasses of ParserEntry, and when the parsetable is serialised into the x.parser.cs file, the parse tables for YyParser and Literals are built. At this point the LALR(1) property is guaranteed, and each CSymbol, represented by its spelling as found in the parser script, has an m_parsetable where state numbers map to at most one ParserEntry (shift or reduce). During ParserGeneration, though, the structures are quite different, in order to perform the LALR analysis efficiently. We describe this structure next.
A transition is a member (q,X) of K (V for which Next(q,X) is defined; it is a terminal transition if it is a transition in K (T and a nonterminal transition if it is a transition in K (N. The transition (q,X) is represented by
[image: image1.wmf]p

q

X

¾

®

¾

, where p=Next(q,X), or by
[image: image2.wmf]¾

®

¾

X

q

 when p is irrelevant, and we define Accessing_symbol p = X ; each state has a unique accessing symbol (p.m_accessingSymbol), except Start, which has none. The class Transition implements this concept. m_next is a ParserShift (or null), and m_reduce is a list of ParserReduces.
During ParserGeneration, a Hashtable m_transitions of the transitions for each state is built. Each transition has an identifying number which helps later (during the Digraph comoutation) to index an array of information about transitions. Thus the set of Transitions can be traversed by traversing the set YyParser.m_states of parse states, and then for each ParseState traversing the set of Transitions starting from this state.
8.2 Handling Actions

Actions are a special kind of Symbol that may be on the right hand side of a production, and are shifted to the stack without consuming any input symbol.

Example: Consider the grammar

	(1)
	S : P %Thing 'b'

	(2)
	
| P 'c'{ return new S(45); }

;

	(3)
	P :

	(4)
	
| 'a'

;

where the numbers in brackets denote the productions. The associated parse table would be

	
	'a'
	'b'
	'c'
	(
	P
	S
	Production Items

	0:
	s3
	r3
	r3
	r3
	g2
	g1
	0a 1a 2a 3r 4a

	1:
	
	
	
	accept
	
	
	0b

	2:
	
	a4
	s6
	
	
	
	1b 2b

	3:
	r4
	r4
	r4
	r4
	
	
	4r

	4:
	
	s5
	
	
	
	
	1c

	5:
	r1
	r1
	r1
	r1
	
	
	1r

	6:
	
	
	
	a7
	
	
	2c

	7:
	r2
	r2
	r2
	r2
	
	
	2r

From state 2 of this example we see that the Closure operation needs to deal with Actions. Note that the end of production actions for productions 1 and 2, and 3 and 4 need to be differentiated: at the end of productions 1 and 4 we want the default action of creating an object representing the left hand side, %S and %P respectively; for production 2 we have an explicit action, and for production 3 the default action returns 0. The default actions for states 1 and 4 are omitted from the table.

Entries in the parsing table are now a bit more complicated. It is worthwhile introducing a ParserAction class with subclasses ParserSimpleAction and ParserOldAction. A ParserSimpleAction will contain a class to be built, and is used for the default action. A ParserOldAction will contain an identifier for use in a run-time switch statement Then a ParserShift will contain a new state, and a ParserReduce will contain a depth. We discuss how to organise these next.

8.3 Implementing the parsing table

In this section we consider what data structures are needed to implement the parse table for the generated parser.
The shift and goto actions amount to a mapping

State (SymbolClass (ParserEntry

which is best implemented as a virtual function defined for each Symbol Class (see lexer.cs):

public virtual bool Pass(YyParser syms,int snum,out ParserEntry entry) {

ParsingInfo pi = (ParsingInfo)syms.symbolInfo[yynum];

if (pi==null)

syms.erh.Fatal(new CSToolsException(string.Format("No parsinginfo for symbol {0} {1}",yyname,yynum)));

bool r = pi.m_parsetable.Contains(snum);

entry = r?((ParserEntry)pi.m_parsetable[snum]):null;

return r;

}

The handling of literal tokens is as follows in ParserGenerator. For each literal token that occurs in the ParserGenerator script, a Literal is generated, each instance of which has its own parsetable. Parser maintains a map from strings to Literals. So the Pass() function for TOKEN is defined to use the token spelling to look up the Literal, whose parsetable entry for the current state is then used.

public override bool Pass(YyParser syms, int snum, out ParserEntry entry) {

if (yynum==1) {

Literal lit = (Literal)syms.literals[yytext];

if (lit!=null)

num = (int)lit.m_yynum; // this.yynum is defined by num

}

ParsingInfo pi = (ParsingInfo)syms.symbolInfo[yynum];

if (pi==null)

syms.erh.Fatal(new CSToolsException(String.Format("Parser does not recognise literal <{0}>",m_str)));

bool r = pi.m_parsetable.Contains(snum);

entry = r?((ParserEntry)pi.m_parsetable[snum]):null;

return r;

}
Note that Literal has a parse table for each instance, whereas SYMBOL has one per class.

This mechanism allows ParserGenerator scripts to have strings as literal tokens, whereas yacc scripts could only allow single characters.

8.4 A grammar for ParserGenerator scripts

We do not use ParserGenerator to generate a Parser for ParserGenerator scripts, though such things are sometimes done. Instead we use a kind of top-down parsing according to the following EBNF grammar:

ParserGeneratorScript = { Production } .

// %parser and other directives are swallowed by Lexer

Production = CSymbol ':' RhSide { '|' RhSide } ';' .

RhSide : { CSymbol | Literal | ACTION | SIMPLEACTION } .

The reason why it is convenient to get the Lexer to do all this extra work for us is that newlines in the script are not significant in Productions, but are significant everywhere else. (We do not need to deal with comments. A special class derived from StreamReader strips out C and C# comments beforehand.) In any case, since the code for handling the lists of tokens must be written by hand somewhere we might as well do it there. The above arrangement gives a reasonable division of labour.

8.5 Semantics of YyParser in ParserGenerator

It is nice not to require non-terminal symbols to be declared, e.g. if all we are doing is syntax checking. So, when a SYMBOL is returned by ParserGenerator's Lexer, ParserGenerator does not know at once whether it is non-terminal or not.
yacc required a %TOKEN declaration all symbolic tokens that did not occur in %left, %right or %prec directives, and assumed all other symbols occurring would be nonterminals.

ParserGenerator will classify a symbolic name A in the following circumstances:

· If A occurs in a %left or %right declaration, A is terminal.

· If A occurs in a %start declaration, A is non-terminal.

· If A occurs in a class definition, A is non-terminal (terminal class definitions are in the LexerGenerator script)

· If A occurs on the left-hand side of a production, A is non-terminal.

At the end of the script, if A still has not been classified, it will be assumed to be terminal. A warning message will be written if the symbol is not defined in the tokens file: ParserGenerator needs to be given this file to check this point.
8.6 The LexerGenerator script for ParserGenerator

The following script is found in pg.lexer:

%lexer script for SymbolsGen input language Malcolm Crowe August 1995,1996,2000,2002

%declare{

public SymbolsGen m_sgen;

}

[\t\n\r]

;

// comments are removed before Lexer sees it

// the following tokens should only be recognised at the start of a line: this limitation is not implemented yet

"%parser"
m_sgen.ParserDirective(); // for Windows file type recognition

"%namespace" m_sgen.SetNamespace();

// optional

"%start"
m_sgen.SetStartSymbol();

// optional

"%symbol"
m_sgen.ClassDefinition("SYMBOL");

"%node"

m_sgen.ClassDefinition("");

"%left".*
m_sgen.AssocType(Precedence.PrecType.left,5);

"%right".*
m_sgen.AssocType(Precedence.PrecType.right,6);

"%before".*
m_sgen.AssocType(Precedence.PrecType.before,7);

"%after".*
m_sgen.AssocType(Precedence.PrecType.after,6);

"%nonassoc".*
m_sgen.AssocType(Precedence.PrecType.nonassoc,9);

"%declare{"
m_sgen.Declare();

"%{"

m_sgen.CopySegment();

[A-Za-z0-9_]+
{ return new CSymbol(m_sgen); } // not Resolve()'d see ParseProduction

"'"[^']+"'"
{ return new Literal(m_sgen); }

 // allow 'strings' as literals

'"'[^"]+'"'
{ return new Literal(m_sgen); }

 // allow "strings" as literals in SymbolsGen

[:;|]

%TOKEN

// the following tokens can occur anywhere in a production right-hand-side

<rhs> [\t\n\r]

;

// comments are removed before Lexer sees it

<rhs> "%"[A-Za-z0-9_]+
{ return new ParserSimpleAction(m_sgen); }

<rhs> '{'

{ return new ParserOldAction(m_sgen); }

<rhs> [A-Za-z0-9_]+
{ return new CSymbol(m_sgen); } // not Resolve()'d see ParseProduction

<rhs> "'"[^']+"'"
{ return new Literal(m_sgen); }

 // allow 'strings' as literals

<rhs> '"'[^"]+'"'
{ return new Literal(m_sgen); }

 // allow "strings" as literals in SymbolsGen

<rhs> [:;|]

%TOKEN

There are inevitably some unusal features here. SymbolsGen is the superclass of ParserGenerate, and this object is passed in to the Lexer so that some of its methods can be called.
8.7 Reading the ParserGenerator script

The parser directives in the script, as can be seen from the above pg.lexer, are handled by methods in SymbolsGen. The only item of interest here is that, as with section 7.7, the ClassDefinition method uses the EmitClassDefinition method in GenBase, which in the full version of Tools.dll uses its own private version of Lexer and Parser, based on the scripts in cs0.lexer and cs0.parser.

The rest of the work is divided between the lexical and (top-down) parsing phases of ParserGenerator. There are three groups of functions in the ParserGenerate class for reading the script. One set, consisting of ClassDef(), IgnoreLine(), and SetStartSymbol(), is essentially lexical, calling lexer.GetChar() repeatedly to deal with such things as class definitions and lists of tokens in AssocType, and very similar in this regard to code such as the constructor for ACTION.

The second group is the recursive descent parser for Productions, consisting of three functions: Create(), Production() and RhSide(). These are parsing rather than lexing functions since they call lexer.Next() instead of lexer.GetChar(). Its nature is not immediately obvious from the code, but leaving out just a few lines gives the classic recursive descent skeleton:

public void Create(string infname,string outbase,string tokbase) { ...

// top-down parsing of script

m_lexer.Start(m_inFile);

m_tok = (TOKEN)m_lexer.Next();

while (m_tok!=null)

ParseProduction();

...

}

The first call of lexer.Next() here deals with all the declarations part of the ParserGenerator script, because of the special actions associated with matching any of the directive keywords (see the pg.lexer script above).

internal void ParseProduction() {

CSymbol lhs = null;

try {

lhs = ((CSymbol)m_tok).Resolve();

} catch(Exception e) {... }

m_tok = lhs;

if (m_tok.IsTerminal())

Error(String.Format("Illegal left hand side <{0}> for production",m_tok.yytext));

if (m_startSymbol==null)

m_startSymbol = lhs;

if (lhs.m_symtype==CSymbol.SymType.unknown)

lhs.m_symtype = CSymbol.SymType.nonterminal;

...

if (!SymbolType.Find(lhs))

new SymbolType(lhs.yytext);

m_prod = new Production(lhs);

m_lexer.yybegin("rhs");

Advance();

if (!m_tok.Matches(":"))

Error(String.Format("Colon expected for production {0}",lhs.yytext));

Advance();

RhSide(m_prod);

while(m_tok!=null && m_tok.Matches("|")) {

Advance();

m_prod = new Production(lhs);

RhSide(m_prod);

}

if (m_tok==null || !m_tok.Matches(";"))

Error("Semicolon expected");

Advance();

m_prod = null;

m_lexer.yybegin("YYINITIAL");

}

public void RhSide(Production p) {

CSymbol s;

ParserOldAction a = null; // last old action seen

while (m_tok!=null) {

if (m_tok.Matches(";"))

break;

if (m_tok.Matches("|"))

break;

if (m_tok.Matches(":")) {

Advance();

p.m_alias[m_tok.yytext] = p.m_rhs.Count;

Advance();

} else {

s = (CSymbol)m_tok;

if (s.m_symtype==CSymbol.SymType.oldaction) {

if (a!=null)

Error("adjacent actions");

a = (ParserOldAction)s;

...

} else if (s.m_symtype!=CSymbol.SymType.simpleaction)

s = ((CSymbol)m_tok).Resolve();

p.AddToRhs(s);

Advance();

}

}

Precedence.Check(p);

}
The remaining function, AssocType() is curious in that it recursively calls lexer.Match() to collect the line contents, and thus represents a sort of intermediate state between the two types of function:

internal void AssocType(Precedence.PrecType pt, int p) {

string line;

int len,action=0;

CSymbol s;

line = Lexer.yytext;

prec += 10;

if (line[p]!=' '&&line[p]!='\t')

Error("Expected white space after precedence directive");

for (p++;p<line.Length && (line[p]==' '||line[p]=='\t');p++)

;

while (p<line.Length) {

len = m_lexer.m_start.Match(line,p,ref action);

if (len<0) {

Console.WriteLine(line.Substring(p));

Error("Expected token");

break;

}

Lexer.yytext = line.Substring(p,len);

if (action<168) // yuk: actions for Literal are 172,192, all other are less

s = (new CSymbol()).Resolve();

else

s = (new Literal()).Resolve();

s.m_prec = new Precedence(pt,prec,s.m_prec);

for (p+=len; p<line.Length && (line[p]==' '||line[p]=='\t'); p++)

;

}

}
OldAction and SimpleAction are called from the Lexer script. Both also watch for special situations. If a SimpleAction is followed by curly brackets, this is not really an OldAction, but a new constructor for the SimpleAction symbol. If an OldAction is followed by the end of the right-hand side, it is a reducing action and becomes a new constructor for the left-hand side symbol. The details are interesting but not worth discussing further here.

8.8 Constructing the LR(0) Parsing Table

The calls to Resolve() in the above code ensure that we get just one CSymbol (or CLiteral) for each distinct grammar symbol in the ParserGenerator script, so that the attributes of these classes can be used to collect information about the symbols.

The next section in parser.Create() handles the remaining stages in constructing the parse tables:

public void Create(string infname,string outbase,string tokbase) { ...

Production special = new Production();
...

// 2: PROCESSING

DoFirst();

DoFollow();

special.AddToRhs(m_startSymbol);

ParseState start = new ParseState();

m_states[0] = start;

start.MaybeAdd(new ProdItem(special,0,CSymbol.EOFSymbol));

start.Closure();

start.AddEntries();

ParserShift pe = (ParserShift)m_startSymbol.m_parsetable[0];

m_accept = pe.m_next;

if (m_accept==null) {

Console.WriteLine("No accept state. ParserGenerator cannot continue.");

Environment.Exit(-1);

}

// 2A: Reduce States

IDictionaryEnumerator de = m_states.GetEnumerator();

for (int pos=0; pos<m_states.Count; pos++) {

de.MoveNext();

ParseState ps = (ParseState)de.Value;

ps.ReduceStates();

}

The first 2 lines of section 2 construct the classical token sets FIRST and FOLLOW, discussed in the next two sections.

The next two build enough of the special production S'(S (to enable the Parser to be constructed. The next 2 lines construct the starting (non-closed) parse state, in the manner described in the next section. Then AddEntries() recursively constructs the parse table:

The principles here are similar to those of LexerGenerator, and are discussed in sections 8.11 and 8.12.

8.9 FIRST

Parser constructs for each CSymbol a set of possible first tokens. The set is implemented as a Map from CSymbol pointers to bool. For a given symbol s, we can check if it is in m_first by

bool val;

if (m_first.count(s)) …

The following helper function ensures a given symbol is in a given set:

internal static bool CheckIn(CSymbol a,SymbolSet map) {

if (map.Contains(a))

return false;

map.AddIn(a);

donesome = true;

return true;

}

The rules for constructing FIRST are given as follows in Aho, Sethi and Ullman (p.189). To compute FIRST(X) for all grammar symbols X, apply the following rules until no more terminals or (can be added to any FIRST set.

1. If X is terminal, then FIRST(X) is {X}.

2. If X ((is a production, then add (to FIRST(X).

3. If X is non-terminal and X (Y1Y2...Yk is a production, then place a in FIRST(X) if for some i, a is in FIRST(Yi) , and (is in all of FIRST(Y1), ... , FIRST(Yi-1); that is, Y1...Yi-1 (* (. If (is in FIRST(Yj) for all j=1,2,...,k, then add (to FIRST(X).

The following code implements this algorithm. For rule 1, literals are kept in a different list from other terminal symbols, so two steps are required.

// The classic algorithms : Aho Sethi Ullman p.189

static bool donesome;

internal void DoFirst() {

// Rule 1: terminals only

IDictionaryEnumerator de = CSymbol.symbols.GetEnumerator();

CSymbol s;

Production p;

for (int pos=0;pos<CSymbol.symbols.Count;pos++) {

de.MoveNext();

s = (CSymbol)de.Value;

if (s.m_symtype==CSymbol.SymType.unknown)

s.m_symtype = CSymbol.SymType.terminal;

if (s.IsTerminal()) {

s.m_first.CheckIn(s);

if (!SymbolType.Find(s))

Console.WriteLine("Warning: lexer script should define symbol {0}", s.yytext);

}

}

de = Literal.literals.GetEnumerator();

for (int pos=0;pos<Literal.literals.Count;pos++) {

de.MoveNext();

s = (CSymbol)de.Value;

s.m_first.CheckIn(s);

}

// Rule 2: Nonterminals with the rhs consisting only of actions

int j,k;

for (k=1;k<Production.prods.Count;k++) {

p = (Production)Production.prods[k];

if (p.m_actionsOnly)

p.m_lhs.m_first.CheckIn(CSymbol.EmptySequence);

}

// Rule 3: The real work begins

donesome = true;

while (donesome) {

donesome = false;

for (k=1;k<Production.prods.Count;k++) {

p = (Production)Production.prods[k];

int n = p.m_rhs.Count;

for (j=0;j<n;j++) {

s = (CSymbol)p.m_rhs[j];

if (s.IsAction())

s.m_first.CheckIn(CSymbol.EmptySequence);

de = s.m_first.GetEnumerator();

for (int pos=0;pos<s.m_first.Count;pos++) {

de.MoveNext();

CSymbol a = (CSymbol)de.Key;

if ((a!=CSymbol.EmptySequence || pos==s.m_first.Count-1))

p.m_lhs.m_first.CheckIn(a);

}

if (!s.m_first.CouldBeEmpty())

break;

}

}

}

}

8.10 FOLLOW

The rules for FOLLOW are given in Aho, Sethi and Ullman p. 189:

1. Place $ in FOLLOW(S), where S is the start symbol and $ is the input right end-marker.

2. If there is a production A ((B(, then everything in FIRST(() except for (is placed in FOLLOW(B).

3. If there is a production A ((B, or a production A ((B(where FIRST(() contains (, (i.e. ((* (), then everything in FOLLOW(A) is in FOLLOW(B).

The following code implements these rules. The first two are methods of Production:

public void AddFirst(CSymbol s, int j) {

for (;j<m_rhs.Count;j++) {

CSymbol r = (CSymbol)m_rhs[j];

s.AddFollow(r.m_first, false);

if (!r.m_first.Contains(CSymbol.EmptySequence))

return;

}

}

public bool CouldBeEmpty(int j) {

for (;j<m_rhs.Count;j++) {

CSymbol r = (CSymbol)m_rhs[j];

if (!r.m_first.Contains(CSymbol.EmptySequence))

return false;

}

return true;

}

The following helper function is a method of CSymbol:

internal void AddFollow(SymbolSet map, bool withE) { // CSymbol->bool : add contents of map to m_follow

IDictionaryEnumerator de = map.GetEnumerator();

for (int pos=0;pos<map.Count;pos++) {

de.MoveNext();

CSymbol a = (CSymbol)de.Key;

if (a!=EOFSymbol || withE)

m_follow.CheckIn(a);

}

}

Finally we can write this method of Parser:

internal void DoFollow() {

// Rule 1:

CheckIn(CSymbol.EOFSymbol,m_startSymbol.m_follow);

// Rule 2 & 3:

donesome = true;

while (donesome) {

donesome = false;

for (int k=1; k<Production.prods.Count; k++) {

Production p = (Production)Production.prods[k];

int n = p.m_rhs.Count;

for (int j=0; j<n-1; j++) {

CSymbol b = (CSymbol)p.m_rhs[j];

// Rule 2

p.AddFirst(b,j+1);

// Rule 3

if (p.CouldBeEmpty(j+1))

b.AddFollow(p.m_lhs.m_follow, true);

}

}

}

}

8.11 Closure

From section 8.2 we expect that for each item in a state, the closure operation should add (a) the starting items for the next symbol if nonterminal; (b) the item following the next symbol if an action. The following methods of ParseState are defined:

internal void CheckClosure(ProdItem item) {

//Console.Write("In CheckClosure for {0} ",m_state);item.Print();

CSymbol ss = item.Next();

if (ss!=null) {

ss.AddStartItems(this,item.FirstOfRest);

if (item.IsReducingAction())

MaybeAdd(new ProdItem(item.m_prod, item.m_pos+1));

}

//Console.Write("End of CheckClosure for {0} ",m_state); item.Print();

}

A ProdItem is a production and a position in the right-hand side:

internal class ProdItem

{

public ProdItem(Production prod, int pos) {...
}

public ProdItem() { ... }

public Production m_prod;

public int m_pos;

public bool m_done;

public CSymbol Next() {

if (m_pos<m_prod.m_rhs.Count)

return (CSymbol)m_prod.m_rhs[m_pos];

return null;

} ...

and Next() simply returns the next symbol in the production's right hand side.

MaybeAdd() is a method of ParseState that simply checks to see if a ProdItem is already there before adding it.

internal void MaybeAdd(ProdItem item) { // called by CSymbol.AddStartItems

if (!m_items.Add(item))

return;

m_changed = true;

}
8.12 AddEntries

CParseState::AddEntries() now builds the parse states and shift transitions.

internal void AddEntries() {

ProdItemList pil;

for (pil=m_items; pil.m_pi!=null; pil=pil.m_next) {

ProdItem item = pil.m_pi;

if (item.m_done)

continue;

CSymbol s = item.Next();

if (s==null || item.IsReducingAction())

continue;

// shift/goto action

// Build a new parse state as target: we will check later to see if we need it

ParseState p = new ParseState(m_sgen,s);

// the new state should have at least the successor of this item

p.MaybeAdd(new ProdItem(item.m_prod, item.m_pos+1));

if (!m_items.AtEnd) {

if (s.IsAction()) {

p = p.CheckExists();

foreach (CSymbol f in s.m_follow.Keys)

if (f!=m_sgen.m_symbols.EOFSymbol)

{

Transition t = GetTransition(f);

t.m_next = new ParserShift((ParserAction)s,p);

}

}

else

{ // we guarantee to make a nonzero entry in the parsetable

GetTransition(s).m_next = new ParserShift(null, p.CheckExists());

}

}

}

}....

Another pass (2A) of the ParseStates is performed to fill in the reduce states: see ParseState.ReduceStates().

public void ReduceStates()

{

ProdItemList pil;

for (pil=m_items; pil.m_pi!=null; pil=pil.m_next)

{

ProdItem item = pil.m_pi;

CSymbol s = item.Next();

if (s==null)

{ // item is a reducing item

Production rp = item.m_prod;

if (rp.m_pno==0) // except for production 0: S'->S-|

continue;

// reduce item: deal with it

int n = rp.m_rhs.Count;

CSymbol a;

ParserReduce pr;

if (n>0 && (a=(CSymbol)rp.m_rhs[n-1])!=null && a.IsAction())

{

ParserAction pa = (ParserAction)a;

pa.m_len = n;

pr = new ParserReduce(pa,n-1,rp);

}

else

{

m_sgen.m_lexer.yytext = "%"+rp.m_lhs.yytext;

ParserSimpleAction sa = new ParserSimpleAction(m_sgen);

sa.m_sym = (CSymbol)rp.m_lhs;

sa.m_len = n;

pr = new ParserReduce(sa,n,rp);

}

foreach (CSymbol ss in item.m_prod.m_lhs.m_follow.Keys)

GetTransition(ss).m_reduce.Add(pr);

}

}

}

8.13 LALR Generation

For this secion we follow F. DeRemer and T. Pennello “Efficient Computation of LALR(1) Look-Ahead Sets” ACM Transactions on Programming Languages and Systems 4 (1982) 615-6149. Much of the text of this famous paper is included almost verbatim in this section, together with notes to explain the implementation in ParserGenerator.

A path H is a sequence of states q0,…,qn such that
[image: image3.wmf]n

n

q

q

q

q

n

X

X

¾

¾

®

¾

®

®

¾

®

¾

-

1

1

0

..

1

We say that H spells (= X1 … Xn and define Spelling H = (and Top H = qn . H is denoted by
[image: image4.wmf]n

q

q

®

®

...

0

a

, pronounced “q0 goes to qn under (”. An alternative notation for H is [q0:(] , given the automaton or its state diagram. The concatenation of [q:(] and [q’: (’] , where Top[q: (] = q’, is written [q:(][q’: (’] and denotes
[q:((’] . [S’: (] can be abbreviated [(] ; thus [] denotes S’ alone. We say that (accesses q if Top[(] = q . Support for the Path concept is provided by class Path; however the constructor corresponding to [q:(] is complicated somewhat by the possible presence of Actions in (.
A configuration is a member of K+(T+ ; its first part is called the state stack and its second the input. The relation ├ on configurations is pronounced “directly moves to” and is the union of ├read and ├A((, for all A(((P . ├read is pronounced “reads to”: [q:(]tz ├read [q:(t]z if Next(Top[q:(],t) is defined. ├A((is pronounced “reduces (to A in moving to”: [q:((]tz ├A(([q:(A]tz if A(((Reduce(Top[q:((],t) (and if [q:(A] is a path; but this additional constraint will always hold in the LR automata considered here). ├* and ├+ are pronounced “moves to”. The language L(LRA(G)) parsed by LRA(G) must be identically L(G) and is
{ z (T* | []z ├+ [Start](} .

A triple (A, (,() (N (V*(V* is called an item (instance of class ProdItem), written A((((if A(((is a production; if (=(, it is a final item. A set of items is called a (parse) table. The set of LR(0) parse tables PT(G) for a CFG G is PT(G) = { Closure {S’((S(} } ({ Closure IS | IS (Successors IS’ for IS’(PT(G) } where Closure IS = IS ({ A(((| B(((A((IS and A(((P , Successors IS = { Nucleus(IS,X) | X(V}, and Nucleus(IS,X) = { A((X((| A(((X((IS} .

An LR(0) automaton for a CFG G is an LR automaton LRA(G) such that there exists a bijective function F:K(PT(G)-{(} where F(Start) = Closure{S’(S(} and for all t(T, X(V, F(Next(q,X))=Closure(Nucleus(Fq,X)) , Reduce(q,t) = { A((| A((((Fq } . F simply establishes a one-to-one correspondence between tables (except (, the “trap table”) and states and thus is an isomorphism between the parse tables and the parser. The LR(0)-ness of the automaton is evident in that the definition of Reduce(q,t) is independent of t. Hereafter, “parser” is often used rather than automaton. (However, note that Reduce(q,t) is not actually independent of t in the method ReduceStates in the last section: note the last two lines of code.)
It is well known that the LR(0) automaton A is a correct parser for G, that is L(A)=L(G) ; however, in general it is nondeterministic, due to the existence of “inconsistent” states. A shorthand notation is useful for a certain sequence of moves:

[(|]yz ├* [(| (]z iff (Top[(],yz) ├* ([Top[(]:(],z)

This captures the notion that the parser reads y and reduces it to (, possibly including reductions on the empty string preceding y. The vertical bar is included in the notation as a reminder that [(]yz ├* [((]z does not imply that y was reduced to (. For example, consider [(A]txz ├read [(At]xz ├A(At [(A]xz ├* [(A(]z , where tx was not reduced to ((here y=tx and (=(A .
“LALR(1) parser” can be defined by refining the definition of Reduce for an LR(0) parser. Intuitively, Reduce(q,t) should contain A((only if there exist sentential (Atz and ((tz such that ((accesses q . The definition of LALR(1) parser is given after the definition of “look-ahead symbols” (LA):

Definition. For an LR(0) parser, LA(q, A(() = { t(T | [((]tz ├A(([(A]tz ├* [S(], and ((accesses q }.

Definition. An LALR(1) parser for a CFG G is like G’s LR(0) parser, except that
Reduce(q,t)={A((| t(LA(q, A(()} .

Definition. A CFG is LALR(1) iff its LALR(1) parser has no inconsistent states.

Theorem. LA(q, A(() = { t(T | S (+ (Atz and ((accesses q } .

Definition. For an LR(0) parser with nonterminal transition (p,A),

Follow(p,A) = {t (T | [(A]tz ├*[S(], and ((accesses p }.

Then it is easy to see that each LA set is just the union of some related Follow sets:

Theorem (Union): LA(q, A(() = U{Follow(p,A) | (p,A) is a transition and
[image: image5.wmf]q

p

®

®

...

w

} .

That is, the LA set for production A((in state q is the union of the Follow sets for the A-transitions whose source state has a path spelling (that terminates at q. Intuitively, when the parser reduces (to A in state q, each such p is a possible top state after (is popped; then the parser must read A in p, all with some terminal t the first of the input. The parser should reduce A((when in state q if the next input symbol t is in any of these Follow(p,A) , that is, if t can follow A in any of the left contexts “remembered” by states p such that
[image: image6.wmf]q

p

®

®

...

w

. This set of transitions can be captured by the following definition

Definition. Lookback(q, A((,p) iff
[image: image7.wmf]q

p

®

®

...

w

.

Thus LA(q, A(() = U{Follow(p,A) | Lookback(q, A((,p) } .

The follow sets are, in turn, related to each other. In particular,

Theorem: Follow(p’,B) (Follow(p,A) if B ((A(, ((* (, and
[image: image8.wmf]p

p

®

®

...

'

b

 .

This is easy to see, since, given some string (accessing p’, we have ((accessing p, and in an appropriate right context, ((A can be reduced first to ((A(via ((* (and then to (B. Thus those symbols that can follow B in the left context remembered by p’ can also follow A in the left context remembered by p. The condition in the theorem is captured in the following definition

Defintion. (p,A) includes (p’,B) iff B ((A(, ((* (, and
[image: image9.wmf]p

p

®

®

...

'

b

 .

Thus Follow(p’,B) (Follow(p,A) if (p,A) includes (p’,B) .

Next, observe that the symbols labelling terminal transitions “following” a nonterminal transition (p,A) are obviously in Follow(p,A):

Definition: Read(p,A) = { t (T | (accesses p and [(A|]tz ├* [(A|(]tz ├read [(A|(t]z ├* [S(] }.

Theorem: Read(p,A) (Follow(p,A) .

Read(p,A) is the set of terminals that can be read before any phrase including A is reduced.

Theorem (Up): Follow(p,A) = Read(p,A) (U{ Follow(p’,B) | (p,A) includes (p’,B) } .

That is, Follow(p,A) is exactly (1) the set of terminals that can be read, via the first read, after reducing a phrase to A in the left context “remembered” by p, before any phrase including A is reduced, together with (2) the Follow sets of the nonterminals to which some phrase containing A, followed at most by some nullable nonterminals, can be reduced before reading another symbol, each such nonterminal in the appropriate left context, of course.

The Read sets can be decomposed in a similar manner. We first define the “direct read symbols” DR:

Definition. If (p,A) is a nonterminal transition, DR(p,A) = { t (T | Next(Next(p,A),t) is defined } .

Theorem (Across): Read(p,A) = DR(p,A) (U{ Read(r,C) | (p,A) reads (r,C) } .

In summary, to compute the LA sets, the Follow sets are needed, for which the Read sets are needed, for which the DR sets are needed. The Follow sets are interrelated as described by the includes relation, as are the Read sets by the reads relation. The computation of these sets is achieved by carrying information along the edges of the graphs induced by the reads and includes relations. A graph traversal algorithm is used to determine an optimum order for doing so, and simultaneously to compute the sets.

Theorems Up and Across relate Follow, Read and DR in such a way that an appropriate graph traversal algorithm can be applied first to compute Read from DR, and then to compute Follow from Read. Note that DR is already directly available in the LR(0) parser, so that the two graphs of interest are those induced by the relations reads and includes.

8.14 Graph algorithms for LALR computation

This material is found in DeRemer and Pennello pages 623-627. It is implemented in pg.cs by class Digraph. The explanation and proof is in the paper, and is not reproduced here. The procedure follows the discussion in the previous section, and is applied to LALR construction in the next section.
This class is reproduced here in toto, annotated with the account of the algorithm given on page 625:

public class Digraph

{

public SymbolsGen sg;

Algorithm Digraph:
Input
R, a relation on X, and F’ a function from X to sets

Output
F, a function from X to sets, such that F x satisfies [the condition in the comment below]

public Relation R; // defines the Digraph on the set of transitions

public Func F1,F2; // we will compute F2 from F1

// such that F2(x) = F1(x) union Union{ F2(y) | xRy }

// by adding elements to the F2 sets using

public AddToFunc DF2;
Let
S be an initially empty stack of elements of X

public ObjectList S = new ObjectList();

Let
N be an array of zeroes indexed by elements of X

public int[] N;

public Digraph(SymbolsGen s,Relation r,Func f1,Func f2,AddToFunc d)

{

sg=s; R=r; F1=f1; F2=f2; DF2=d;

N = new int[sg.m_trans];

for (int j=0;j<sg.m_trans;j++)

N[j]=0;

}

public void Compute()

{

For
x (X such that N x = 0 do call Traverse x od

foreach (ParseState ps in sg.m_symbols.m_states.Values)

foreach (Transition t in ps.m_transitions.Values)

if (N[t.m_tno]==0)

Traverse(t);

}

where
recursive Traverse x =

void Traverse(Transition x)

{

call
Push x on S

S.Push(x);

con
d: Depth of S

int d = S.Count;

assign
N x (d

;
F x (F’ x

N[x.m_tno] = d;

DF2(x,F1(x));

For y (X such that xRy

foreach (Transition y in R(x).Keys)

{

do if Ny = 0 then call Traverse y fi

if (N[y.m_tno]==0)

Traverse(y);

Assign N x (Min(N x, N y)

; F x (F x (F y

if (N[y.m_tno]<N[x.m_tno])

N[x.m_tno] = N[y.m_tno];

DF2(x,F2(y));

od

}

if N x = d

if (N[x.m_tno]==d)

then repeat assign N(Top of S) (Infinity
; F(Top of S) (F x

for (;;)

{

Transition t = (Transition)S.Top();

N[t.m_tno] = int.MaxValue;

DF2(t,F2(x));

Until (Pop of S) = x

if (S.Pop()==x)

break;

}

fi

}

end Traverse

}

end Digraph

8.15 LALR Implementation

We annotate the outline of the procedure from DeRemer and Pennello with code. Methods in class Transition of the form public static void BuildXXX(Transition t) are called in the pattern

m_symbols.Transitions(new Build(Transition.BuildXXX));

A complete procedure to compute LALR(1) look-ahead sets from an LR(0) automaton is as follows:

A. Compute which nonterminals are nullable.

B. Initialize Read to DR: one set for each nonterminal transition, by inspection of the transition’s successor state.

public static void BuildDR(Transition t)

{

t.m_DR = new SymbolSet(t.m_ps.m_sgen);

if (t.m_next==null)

return;

foreach (CSymbol s in t.m_next.m_next.m_transitions.Keys)

t.m_DR.AddIn(s);

}

C. Compute reads: one list of nonterminal transitions per nonterminal transition, by inspection of the successor state of the latter transition.

public static void BuildReads(Transition t)

{

t.m_Read = new SymbolSet(t.m_ps.m_sgen);

ParseState ps = t.m_A.Next(t.m_ps);

if (ps==null)

return;

foreach (Transition b in ps.m_transitions.Values)

if (b.m_A.CouldBeEmpty())

t.m_reads[b] = true;

}

D. Apply algorithm Digraph to reads to compute Read; if a cycle is detected, announce that the grammar is not LR(k) for any k. The code for this is in pg.cs:

new Digraph(this,

new Relation(Transition.reads),

new Func(Transition.DR),

new Func(Transition.Read),

new AddToFunc(Transition.AddToRead)).Compute();

E. Compute includes and lookback: one list of nonterminal transitions per nonterminal transition and reduction, respectively, by inspection of each nonterminal transition and associated production right parts, and by considering nullable nonterminals appropriately.

public static void BuildLookback(Transition t)

{

foreach (ParserReduce pr in t.m_reduce.Values)

pr.BuildLookback(t);

}

where in class ParserReduce we find

public void BuildLookback(Transition a)

{

SymbolsGen sg = a.m_ps.m_sgen;

if (m_lookAhead!=null)

return;

m_lookAhead = new SymbolSet(sg);

foreach (ParseState p in sg.m_symbols.m_states.Values)

{

Transition b = (Transition)p.m_transitions[m_prod.m_lhs];

if (b==null)

continue;

Path pa = new Path(p,m_prod.Prefix(m_prod.m_rhs.Count));

if (pa.valid && pa.Top == a.m_ps)

b.m_lookbackOf[this] = true;

}

}

F. Apply algorithm Digraph to includes to compule Follow: use the same sets as initialized in part B and completed in part D, both as initial values and as workspace. If a cycle is detected in which a Read set is nonempty, announce that (as we conjecture) the grammar is not LR(k) for any k.

new Digraph(this,

new Relation(Transition.includes),

new Func(Transition.Read),

new Func(Transition.Follow),

new AddToFunc(Transition.AddToFollow)).Compute();

G. Union the Follow sets to form the LA sets according to the lookback links computed in part F.

public static void BuildLA(Transition t)

{

foreach (ParserReduce pr in t.m_lookbackOf.Keys)

pr.m_lookAhead.Add(t.m_Follow);

}

H. Check for conflicts; if none, announce that the grammar is LALR(1) – we have a parser.

public static void BuildParseTable(Transition t)

{

YyParser syms = t.m_ps.m_sgen.m_symbols;

ParsingInfo pi = t.ParsingInfo;

ParserReduce red = null;

foreach (ParserReduce pr in t.m_reduce.Values)

{

if (pr.m_lookAhead.Contains(t.m_A))

{

if (red!=null)

syms.erh.Error(new CSToolsException(12,
string.Format("reduce/reduce conflict {0} vs {1}",red.m_prod.m_pno,pr.m_prod.m_pno)+

string.Format(" state {0} on {1}",t.m_ps.m_state,t.m_A.yytext)));

red = pr;

}

//

else

//

t.Print(pr.m_lookAhead,"discarding reduce ("+pr.m_prod.m_pno+") LA ");

}

if (t.m_next!=null && t.m_A!=syms.EOFSymbol)

{

if (red==null)

pi.m_parsetable[t.m_ps.m_state] = t.m_next;

else

switch (t.m_A.ShiftPrecedence(red.m_prod,t.m_ps))

{

case Precedence.PrecType.left :

pi.m_parsetable[t.m_ps.m_state] = t.m_next; break;

case Precedence.PrecType.right :

pi.m_parsetable[t.m_ps.m_state] = red; break;

}

}

else if (red!=null)

pi.m_parsetable[t.m_ps.m_state] = red;

}

8.16 Handling precedence

ParserGenerator takes the same approach to precedence as yacc does. We need to ensure (for example) that when we have the situation E + E * x , with the current symbol being *, the reduction E (E + E does not occur, and that the * is shifted on to the stack. This is done by comparing the precedence of the symbol * with the production E (E + E . The production gets its precedence from the binary + .

For associativity, note that with E - E - x we want to reduce using E (E - E before we shift, because - is left associative, while with E (E (x, we want to shift, because (is right associative. When we complete a production, we look to see what the "reduce predence" of the production is, based on any unary or binary operator it contains.

internal class Precedence

{

public enum PrecType { left, right, nonassoc, before, after };

public PrecType m_type;

public int m_prec;

public Precedence m_next;

public Precedence(PrecType t,int p,Precedence next) {

if (CheckType(next,t)!=0)

Console.WriteLine("redeclaration of precedence");

m_next = next; m_type = t; m_prec = p;

}

static int CheckType(Precedence p,PrecType t) {

if (p==null)

return 0;

if (p.m_type==t || (p.m_type<=PrecType.nonassoc && t<=PrecType.nonassoc))

return p.m_prec;

return Check(p.m_next,t);

}

public static int Check(Precedence p,PrecType t) {

if (p==null)

return 0;

if (p.m_type==t)

return p.m_prec;

return Check(p.m_next,t);

}

public static int Check(CSymbol s, Production p) {

if (s.m_prec==null)

return 0;

int a = CheckType(s.m_prec, PrecType.after);

int b = CheckType(s.m_prec, PrecType.left);

if (a>b)

return a - p.m_prec;

else

return b - p.m_prec;

}

public static void Check(Production p) {

int efflen = p.m_rhs.Count;

while (efflen>1 && ((CSymbol)p.m_rhs[efflen-1]).IsAction())

efflen--;

if (efflen==3) {

CSymbol op = (CSymbol)p.m_rhs[1];

int b = CheckType(op.m_prec, PrecType.left);

//
Console.WriteLine("{0} has binary prec {1}",op.yytext,b);

if (b!=0 && ((CSymbol)p.m_rhs[2])==p.m_lhs) { // allow operators such as E : V = E here

p.m_prec = b;

//

Console.WriteLine("setiing precedence of {0} to {1}",p.m_pno,b);

}

} else if (efflen==2) {

if ((CSymbol)p.m_rhs[0]==p.m_lhs) {

int aft = Check(((CSymbol)p.m_rhs[1]).m_prec, PrecType.after);

if (aft!=0)

p.m_prec = aft;

} else if ((CSymbol)p.m_rhs[1]==p.m_lhs) {

int bef = Check(((CSymbol)p.m_rhs[0]).m_prec, PrecType.before);

if (bef!=0)

p.m_prec = bef;

}

}

}

}

This mechanism is simple and effective for most purposes.

8.17 Parse table construction: concluding steps

As its name implies, CheckExists() simply looks through the list of ParseStates to see if the proposed new state is already in the list.

internal ParseState CheckExists() {

Closure();

//Console.WriteLine("CheckExists {0}",m_state);

IDictionaryEnumerator de = Parser.the_parser.m_states.GetEnumerator();

for (int j=0;j<Parser.the_parser.m_states.Count;j++) {

de.MoveNext();

ParseState p = (ParseState)de.Value;

if (SameAs(p)) {

MergeLookAheadSets(p);

return p;

}

}

Parser.the_parser.m_states[m_state]=this;

//Print();

AddEntries();

return this;

}
If it is new, we call AddEntries to build its parsetable in turn. This is done inside the CheckExists() function. As a result of this recursion, the entire parsetable has been built by the time the starting state has been dealt with.

internal bool SameAs(ParseState p) {

ProdItemList pos1 = m_items;

ProdItemList pos2 = p.m_items;

while (!pos1.AtEnd && !pos2.AtEnd && pos1.m_pi.m_prod==pos2.m_pi.m_prod && pos1.m_pi.m_pos==pos2.m_pi.m_pos) {

pos1 = pos1.m_next;

pos2 = pos2.m_next;

}

return pos1.AtEnd && pos2.AtEnd;

}

8.18 Serialisation of the Parser

This is handled by the YyParser::Emit function.

public void Emit(TextWriter m_outFile)

{

Serialiser b = new Serialiser(m_outFile);

Console.WriteLine("Serialising the parser");

b.Serialise(m_startSymbol);

b.Serialise(m_accept);

b.Serialise(m_states);

b.Serialise(literals);

b.Serialise(symbolInfo);

b.Serialise(m_concrete);

m_outFile.WriteLine("0};");

}

All the above is then written out to the file (still in Symbol.Emit):

ms.Position=0;

int k=0;

for (int j=0;j<ms.Length;j++)

{

int bb = ms.ReadByte();

if (k++ ==10)

{

m_outFile.WriteLine();

k = 0;

}

m_outFile.Write("{0},",bb);

}

m_outFile.WriteLine("0};");

}

Finally, back in ParserGenerate::_Create the class factories are output:

// output the class factories

Console.WriteLine("Class factories");

de = CSymbol.symbols.GetEnumerator();

for (int pos = 0; pos<CSymbol.symbols.Count; pos++) {

de.MoveNext();

string str = (string)de.Key;

s = (CSymbol)de.Value;

if ((s==null) // might happen because of error recovery

|| (s.m_symtype!=CSymbol.SymType.nonterminal && s.m_symtype!=CSymbol.SymType.nodesymbol))

continue;

m_outFile.WriteLine("new factory(\"{0}\",new Creator({0}_factory));",str);

}

m_outFile.WriteLine("}");

de.Reset();

for (int pos = 0; pos<CSymbol.symbols.Count; pos++) {

de.MoveNext();

string str = (string)de.Key;

s = (CSymbol)de.Value;

if ((s==null) // might happen because of error recovery

|| (s.m_symtype!=CSymbol.SymType.nonterminal && s.m_symtype!=CSymbol.SymType.nodesymbol))

continue;

m_outFile.WriteLine("public static object "+str+"_factory() { return new "+str+"(); }");

}

m_outFile.WriteLine("public "+outbase+"(Lexer lexer) : base(lexer) {}}");

if (m_namespace)

m_outFile.WriteLine("}");

m_outFile.Close();

Console.WriteLine("Done");

}

This concludes the description of the operation of ParserGenerator.

Appendix A: The syntax of LexerGenerator scripts

This appendix uses EBNF to describe the structure of a LexerGenerator script.

A1. Regular Expressions

A regular expression must be constructible as follows:

1. A single character other than white space or the special characters . + * [' " ? \ / % { The regular expression matches that character. The character \ is handled specially as in C.

2. A sequence of characters other than ' enclosed in single quotes, or a sequence of characters other than " enclosed in double quotes. The character \ is handled specially as in C. The regular expression matches the enclosed string of characters. Note that this form of regular expression can be used for matching special characters. If the quoted string is preceded by U the regular expression matches the enclosed string of characters disregarding case.
3. A set of characters enclosed in square brackets [] . If the character ^ is the first of the enclosed characters, it indicates complementation of the set of characters. The character - occurring not at the start of the enclosed characters can be used to indicate a range of characters. The regular expression matches any single character of the resulting set.

4. A dot . . This regular expression matches any character except newline.

5. Any regular expression can be enclosed in brackets () , without change to what it matches.

6. {N} matches what R matches, if R is a predefined regular expression with symbolic name N. A number of Unicode character categories are predefined: the full list is given below. Additional symbolic names can be defined using the %define directive (this overrides the predefined names in case of conflict).

7. A regular expression R can be followed by ? , *, or +, thus R?, R*, R+, to match respectively 0 or 1 occurrences, 0 or more occurrences, and 1 or more occurrences, of strings that R match.

8. Two regular expressions R and S can be concatenated, RS, to match the concatenation of what they match.

9. Two regular expressions R and S can be combined with the operator | , R|S, to match any string that either matches.

The rules have equal precedence and associate to the right, so that for example AB|C means A(B|C) and A|BC means A|(BC). Use extra brackets if necessary to obtain the intended meaning.
A2. Lexical elements of the LexerGenerator script

White space (spaces, newlines, and tabs) is not significant in the script except where specified below. Sequences of characters in Courier Bold in the following notes should appear as they do here. Note the distinction between the EBNF notation of { } denoting 0 or more occurrences of something, and { } which represent actual curly brackets in the script. C#-style comments, starting with // and continuing to the end of the line, are ignored. C-style comments, introduced by /* and ending with */, possibly with embedded newlines, are ignored.

This behaviour can be rather a nuisance. Even enclosed in quotes, /* is detected as the start of a comment, so if the lexer script is to contain /* as part of a token, it is necessary to use a device such as [/]"*" . Similiarly if the lexer script is to contain // as part of a token, write something like "/""/".
Name can be any sequence of alphanumeric characters.

Code can be any segment of C#, whose curly brackets balance.

RegularExpression is a nonempty sequence of characters not containing white space following the rules given in the previous section.

A3. Syntax elements of the LexerGenerator script

LexerGeneratorScript = %lexer [classname] { LexSpecElement } .

%lexer must be at the start of the first line of the file. The classname if present gives the name of the generated Lexer class, which is tokens by default. The sequence of LexSpecElements starts on the next line.

LexSpecElement = Namespace | Encoding | CodeSegment | Definition | TokenClass | ActionVars | LexemeSpec .

Encoding = %encoding Encoding

The encoding specification is optional, and specifies the way the generated lexer will open source files. Encoding is one of ASCIICAPS, ASCII, UTF7, UTF8, Unicode, or a codepage specified as a decimal integer. ASCIICAPS is a version of ASCII which is case-insensitive (except on scripts). By default the encoding is the same encoding that lg used to read the lexer script file. This is specified by the –C flag in the lg command: if this is not specified the default encoding is ASCII to ensure that the locale-dependent \r works correctly.
Namespace = %namespace Name

This tells LexerGnerator to place the entire generated file in namespace Name. The %namespace directive must be at the start of a line in the script file, and should appear before any other elements.

CodeSegment = %{ Code %} .

Both the %{ and %} directives must be at the start of a line in the script file.

Definition = %define Name RegularExpression .

The %define directive must be at the start of a line in the script file.

A Name can be defined once only in this way, and can be referred to in RegularExpressions by enclosing the Name in curly brackets. For example, if we have

%define Digits [0-9]+
then we could later have a RegularExpression such as {Digits}"."{Digits}

In addition a number of Names are predefined with their conventional Unicode meanings: Symbol, Punctuation, PrivateUse, Separator, WhiteSpace, Number, Digit, Mark, Letter, Lower, Upper, together with all of the UnicodeCategory names supported by the .NET framework. These match a single character of the given class.

TokenClass = %token Name [: Name] { [Code] }; .

The %token directive must be at the start of a line in the script file. Both Names must be acceptable C# identifiers. The Code, if present, must be the body of a class declaration for the token, following C# syntax. The optional : Name is used as in C# to indicate that one token class is derived from another. If it is omitted, TOKEN, the default base class for a token, is used. If you declare your own subclass of TOKEN to use as a base class, you will need to provide it with a constructor of the form public thing (Lexer yyl): base(yyl) {} .
NodeClass = %node Name : SuperName { [Code] }; .

The %node directive must be at the start of a line in the script file. Both Names must be acceptable C# identifiers. The Code, if present, must be the body of a class declaration for the token, following C# syntax. The SuperName must previously have been defined as a TokenClass, and is the token class that this node class derives from. The parser will be informed that the token returned belongs to this TokenClass: the node class name is not visible to the parser.
To define additional variables for use in actions, use the %declare{ directive:

ActionVars = %declare{ Code }

There can be at most one such directive, and it must occur at the start of a line. Code can have embedded newlines, and is added into your Lexer subclass. To access these variables inside a token object or lexer action, prefix it by yyl (e.g. if you %declare { public int a: } then you would write yyl.a).

LexemeSpec = [Startstate] RegularExpression [Action] .

The StartState if present and if it is not present, the RegularExpression, must be at the start of a line in the script file. If Action is missing, input characters corresponding to the reguslar expression will be discarded.

StartState = <Symbol> .

Symbol can be any sequence of characters not including > .

Action = [% Name] [ResWds |{ Code }] | ; .

If %Name is present, it defines the class of the returned token (unless the ResWds specification is also present and the input symbol matches a reserved word). If Name has not been declared, its occurrence defines a new subclass of TOKEN. The Code if present defines a constructor for a new subclass of Name. If %Name is not present, the Code represents action to be taken on matching the regular expression: this may include return new Name(…); where Name has been previously declared as a token or node class, or is the predefined class TOKEN. If parameters are supplied in the parentheses here, a suitable constructor should have been defined inside the %token or %node declaration.. Some symbols inside the Code for an Action are predefined:

	public void yybegin(string newstate)
	defines a new start state

	string yytext
	the string that has matched

	bool reject
	my be set to true to make the current match fail

ResWds = %except [U] { ResWdList }
If ResWds is specified, %Name must be present in the LexemeSpec. U if present indicates that the following reserved word list is case-insensitive, and the input is to be converted to upper case bfore testing against the given list of identifiers.
ResWdList = Ident [Alt] [, ResWdList]

If the input string matches the given Ident, then a new instance of a class with the name Ident (or Alt if present) will be returned. This class is declared if necessary as a subclass of TOKEN.

Note that the use of a Startstate in the LexemeSpec, or different regular expressions, can support multiple lists of reserved words. This ResWds construct is provided as an alternative to giving a LexemeSpec for each reserved word (or handling reserved words inside a Code segment).

A4. Conflicts and Precedence

Whenever Lexer::Next() is called, in principle each regular expression is matched in turn against the input to find the longest match. The idea is that the Action corresponding to the regular expression yielding the longest match should be carried out. If two or more regular expressions match the same maximal number of characters, then the Action corresponding to the first of these regular expressions in the script is carried out.

.

Appendix B: The syntax of ParserGenerator scripts

This Appendix uses EBNF to describe the structure of a ParserGenerator script.

B1. Lexical elements of the ParserGenerator script

White space is not significant in the script except as specified below. Sequences of characters in Courier Bold in the following notes should appear as they do here. Note the distinction between { } denoting 0 or more occurrences of something, and { } which represent actual curly brackets in the script, and similarly between the EBNF | denoting an alternative production right-hand side, and | representing an actual bar in the script. C#-style comments, starting with // and continuing to the end of the line, are ignored. C-style comments, introduced by /* and ending with */, possibly with embedded newlines, are ignored.

An Ident consists of any acceptable C# identifier.

A Literal consists of any C# string using ' or " as delimiter. Escape sequences using \ have the meanings as in C.

Code can be any segment of C#, whose curly brackets balance.

B2. Syntax elements of the ParserGenerator script

ParserGeneratorScript = %parser tokfile [classname] { ParserSpecElement } .

%parser must be at the start of the first line of the file. The tokfile supplies the name of the tokens file with or without the .cs extension. The classname if present gives the name of the generated Parser class, which is syntax by default. The sequence of ParserSpecElements starts on the next line.

ParserSpecElement = Namespace | CodeSegment | SymbolClass | NodeClass | Directive | Production .

Namespace = %namespace Name

This tells ParserGenerator to place the entire generated file in namespace Name. Name may contain embedded dots. The %namespace directive must be at the start of a line in the script file, and should appear before any other elements.

CodeSegment = %{ Code %} .

SymbolClass = %symbol Ident [: Ident] { [Code] }
| %symbol Ident [: Ident] ; .
The %symbol directive must be at the start of a line in the script file. The Code, if present, must be the body of a class declaration for the symbol. The optional : Ident is used as in C# to indicate that one token class is derived from another. If it is omitted, SYMBOL, the default base class for a token, is used.
The body of the default constructor, if declared inline, may refer to entries from the parser’s stack as $1, $2, etc. These will be automatically expanded by ParserGenerator and given as type a pointer to the corresponding SymbolClass, TokenClass, or NodeClass type. It is possible to invoke similar mechanisms for non-inline constructors: see Chapter 3, e.g. Variable() { ident = $1; }
If you declare your own subclasses of SYMBOL to use as a base class, you will need to provide a constructor of the form public thing (Parser yyp) : base(yyp) {} . If the classes are declared in the %symbol or %node declaration, the extra constructor parameter and call on the base constructor is provided for you.

NodeClass = %node Ident : Ident { [Code] } .

The %node directive must be at the start of a line in the script file. The Code, if present, must be the body of a class declaration for the token. The : Ident is used as in C# to indicate that one class is derived from another: in this case it should be a SymbolClass, or another NodeClass.

The body of the default constructor, if declared inline, may refer to entries from the parser’s stack as $1, $2, etc. These will be automatically expanded by ParserGenerator and given as type a pointer to the corresponding SymbolClass, TokenClass, or NodeClass type. It is possible to invoke similar mechanisms for non-inline constructors as above.
Directive = LeftDirective | RightDirective | NonassocDirective | BeforeDirective | AfterDrective | StartDirective | ActionVars .

LeftDirective = %left { Token } .

RightDirective = %right { Token } .

NonassocDirective = %nonassoc { Token } .

BeforeDirective = %before { Token } .

AfterDirective = %after { Token } .

Token = Ident | Literal .

The Ident must be the name of a token class defined in the corresponding LexerGenerator script. The order of these directives establishes the precedence of these operators, from lowest to highest.

StartDirective = %start Ident .

The Ident must be the name of a grammar symbol defined in the script. If there is no StartDirective, the first production is assumed to indicate the start symbol.

To define additional variables for use in actions, use the %declare{ directive:

ActionVars = %declare{ Code }

There can be at most one such directive, and it must occur at the start of a line. Code can have embedded newlines, and is added into the Parser subclass. To access the Parser subclass from inside symbol objects or actions, prefix it by yyp. (e.g. with %declare{ public int a; } you would use yyp.a in an action or symbol object.)
Grammar symbols (SymbolClasses) are defined by occurring on the left hand side of a production:

Production = Ident : RightHandSide { | RightHandSide } ; .

RightHandSide = { RightHandElement } .

RightHandElement = Ident [: AliasIdent] | Literal | Action | %prec Ident .

Action = SpecialAction | OldAction .

The Ident in the first alternative must be the name of a SymbolClass or a TokenClass ; it need not have been defined earlier. It may be the predefined symbol error , in which case it is usually accompanied by an OldAction that generates an error message. There is a predefined Ident, EOF, which may be used in the right hand side like a Literal. If the last element on the right hand side is not an Action, a default SpecialAction is supplied equivalent to % (see below).

SpecialAction = [%Ident [[: BaseIdent] [(Params)]] { Code }] .

The Ident in a SpecialAction is the name of a SymbolClass or a NodeClass which will be constructed by the action. If the name has not been declared earlier as a SymbolClass or a NodeClass, it is implicitly defined as a NodeClass for the SymbolClass of the left hand side of the production or the given BaseClass if present. If no name is given, ParserGenerator uses the Ident on the left hand side of the Production. The SpecialAction %null is used to produce an object that will appear to be null.

The Code if present is used as the default constructor for the class constructed by the action, so should not contain the return keyword. The notation $1 , $2 , etc or the AliasIdents can be used to refer to earlier entries in the right hand side, and can be used (e.g. $1.yytext) to retrieve attributes from the corresponding symbols or tokens (ParserGenerator supplies the appropriate type conversion).

The facility of referring to $0 , $-1 etc is also available for extracting symbols from further down the parser stack, but ParserGenerator is unable to supply the appropriate type conversion.

OldAction = { Code } .

If this occurs at the end of a production, it is treated as if it was a constructor for a class derived from the left-hand side symbol. If an OldAction occurs elsewhere in a production, the Code may construct a node and return it. The notation $1 , $2 , etc or the AliasIdents can be used as for SpecialActions. The notation $$ can be used similarly to yacc to provide a node to be returned, and/or to define its attributes. By default, the class of this node is the left hand side of the production, but the notation $<Ident>$ can be used to provide another node type.

%prec is followed by a terminal symbol whose precedence is used for the immediately preceding symbol. [This feature was added in version 3.7 and is as yet insufficiently tested.]

B3. Conflicts and Precedence

Shift-reduce conflicts for binary operators can be resolved using the left, and right associativity directives together with the precedence directives for other operators: nonassoc, before and after Remaining shift-reduce conflicts are resolved in favour of shift: they are reported as warnings by ParserGenerator, since the resulting behaviour may not be what is required.

Reduce-reduce conflicts not resolved in this way are reported as errors by ParserGenerator.

These are the same conflict rules as in yacc, where peculiar grammars can also not be parsed correctly..

Example: Consider the grammar

1. S (Ab

2. S (aB

3. A (a

4. B (bc

Then ParserGenerator will report a shift-reduce conflict as shown below. The resulting parser will fail to parse the input string ab correctly.

	
	a
	b
	c
	(
	A
	B
	S
	
	

	0:
	s4
	
	
	
	g2
	
	g1
	0:
	0a 1a 2a 3a

	1:
	
	
	
	accept
	
	
	
	1:
	0b

	2:
	
	s3
	
	
	
	
	
	2:
	1b

	3:
	r1
	r1
	r1
	r1
	
	
	
	3:
	1r

	4:
	r3
	s6*
	r3
	r3
	
	g5
	
	4:
	2b 3r 4a * shift-reduce conflict on 'b'

	5:
	r2
	r2
	r2
	r2
	
	
	
	5:
	2r

	6:
	
	
	s7
	
	
	
	
	6:
	4b

	7:
	r4
	r4
	r4
	r4
	
	
	
	7:
	4r

	
	0
	a
	b (

	0 a
	4
	b
	(

	0 a 4 b
	6
	(
	

	
	
	
	ERROR

For this reason, if ParserGenerator reports shift-reduce conflicts, it is important to examine the parsing table for errors.

For programming languages most shift-reduce conflicts arise from optional elements at the ends of productions, with the else part of an if-statement being a prime example. For such cases, resolving the conflict in favour of shift is the correct thing to do.

The parsetable output by ParserGenerator using the -D flags and the input appropriate for this example is as follows:

Shift/Reduce conflict B on reduction 3

Shift/Reduce conflict 'b' on reduction 3

state 0

 0 $start : _S

 1 S : _A 'b'

 2 S : _'a' B

 3 A : _'a'

 'a' shift 4

 A shift 2

 S shift 1

state 1

 0 $start : S_

state 2

 1 S : A_'b'

 'b' shift 3

state 3

 1 S : A 'b'_

 . reduce 1

state 4

 2 S : 'a'_B

 3 A : 'a'_

 4 B : _'b' 'c'

 'b' shift 6

 B shift 5

 . reduce 3

state 5

 2 S : 'a' B_
Appendix C. The Lexer class API
For technical reasons nearly all the classes and methods in Tools.dll have to be declared public. This Appendix documents the classes, methods and data that are likely to be useful for developers. See the sources for details of other aspects of the library.

Admittedly it is a bit confusing that several classes have such similar names. tokens is the default name for the generated Lexer subclass, YyLexer is a class that contains the lexical details of a language, and is the base class for one of the generated classes, and TOKEN is an object returned by Lexer.Next().

C1. The <tokens> class

The name of this class can be defined in the %lexer directive as described in Appendix B. The default name tokens is used in these notes. tokens is a subclass of Tools.Lexer . See the notes on Lexer below for inherited members.

Constructors
	new tokens()
	Creates a new instance of the Lexer subclass tokens for its YyLexer class yytokens .

	new tokens(ErrorHandler eh)
	Creates a new instance of the Lexer subclass tokens for its YyLexer class yytokens, and the ErrorHandler eh (see C8 below).

	new tokens(YyLexer tks)
	Creates a new instance of the Lexer for the given YyLexer class. Multiple instances can be used, which may be in different threads. This interface is provided so that tks can be initialised beforehand, or shared between several tokens instances, which may be used in different threads. tks should be an instance of the corresponding YyLexer class yytokens.

The new methods of this class will be those declared in a %declare{ section in your script.
C2. The Lexer class

Tools.Lexer is defined in Tools.dll. It is an abstract class.
Properties

	bool m_debug
	If set to true, a state trace is produced duting lexing, which can be read in conjunction with the output from the lg command when the –D flag is set.

	YyLexer tokens
	The corresponding YyLexer instance

	string yytext
	The Match algorithm gives this a value during matching. However, actions in your parsing script can override this value. By default, yytext is used in constructing the next TOKEN.

	void yy_begin (string newstate)
	This method is used for state-dependent scripts. See section 2.3, example 2.6. The pseudo-method yybegin() is a symonym for yyl.yy_begin .

Methods
	void Start (string buf)
	Prepare to run the Lexer on the given input string

	void Start (StreamReader inFile)
	Prepare to run the Lexer on the given StreamReader. inFile will be reopened with the correct Encoding (see below)

	void Start(CsReader inFile)
	The CsReader class is a kind of StreamReader that ignores comments.

	TOKEN Next()
	Returns the next token from the input stream, or null if there is none. Note that the script may specify use of the EOF token for end-of-file.

	int GetChar()
	(Advanced) Gets the next character from the input stream, or 0 if there is none. The int 0xFFFF is used if the script uses the EOF token.

	IEnumerator GetEnumerator()
	Returns an enumerator for TOKENS in the input file.

During lexing the following are the only data in the Lexer class that change: m_state, yytext, m_pch, m_matching, m_startMatch. Otherwise Lexer and all related classes are immutable.

C3. The yy<tokens> class
This is a subclass of Tools.YyLexer .
	TOKEN OldAction (Lexer yym, ref string yytext, int action, ref bool reject)
	This method will contain the code from actions in the script. (see Appendix A, section A3.) The pseudo-variable yyl is a synonym for (tokens)yym .

C4. The YyLexer class

Tools.YyLexer is defined in Tools.dll.
Properties

	System.Text.Encoding m_encoding
	The Encoding used to read the input file.

	IEnumerator GetEnumerator()
	Returns an enumerator for TokClassDefs.

C5. The CsReader class

Tools.CsReader is defined in Tools.dll

Constructor

	new CsReader(string filename)
	Opens the given file for reading. filename can be a path.

Methods

	bool Eof()
	True if the CsReader has reached the end of file (like StreamReader.Eof()).

	int Read()
	Gets the next character from the stream, or -1 if at end of file (like StreamReader.Read()), suppressing C#-style comments.

	string ReadLine()
	Gets the next line from the file (like StreamReader.ReadLine()), suppressing C#-style comments.

C6. The TOKEN class

TOKEN is defined in Tools.dll. It is returned by Lexer.Next() and is the default base class for a %token.

Properties

	string yytext
	The characters forming the token.

	int pos
	The position in the source file.

	string Pos
	A string version of the position in form “Line n, char m”

	object yylval
	A value field that may be set in actions.

Methods

	virtual string yyname()
	In subclasses, the name of the token subclass (for TOKEN itself this is “TOKEN”).

	override string ToString()
	By default returns a string constructed from yyname() and yytext. Override this if you want to display something else.

C7. The CSToolsException class

This has subclasses CSToolsFatalException and CSToolsStopException
Properties
	int nExceptionNumber
	A number identifying the exception condition (see Appendix E)

	SourceLineInfo slInfo
	Information about the source line containing the error if known (see section C9)

	string sInput
	The input string if known

	SYMBOL sym
	The symbol or token related to the error if known

	string Message (inherited from Exception)
	A string describing the exception

C8. The ErrorHandler class

Can be supplied when creating a new Lexer. The following methods can be overridden in a subclass to provide custom exception handling during lexing and parsing.
Constructor
	new ErrorHandler (bool ee)
	ee is used to provide an initial value for the throwExceptions property described below.

Properties

	int counter
	Can be used to count errors. It is incremented by the default Error method.

	bool throwExceptions
	Is used in the default implementation to decide whether to throw non-fatal exceptions.

Methods

	void Error(CSToolsException e)
	Handles an error generated during lexing/parsing or lexer/parser generation. The default implementation increments counter, then if the error is fatal or throwExceptions is true, throws the exception, and otherwise, calls Report

	void Report (CSToolsException e)
	Handles the display of an error message by Error. The default implementation prints the message in English on the console (see Appendix E).

C9. The SourceLineInfo class

Properties

	int lineNumber
	The line in the source file before removing comments

	int rawCharPosition
	The character position in the line before eremoving comments

	int charPosition
	The character position in the line after removing comments

	string sourceLine
	The sourceLine if available after removing comments

Methods

	string ToString() (inherited from object)
	Overridden. Returns a string of form “Line nnn, char xxx” using the lineNumber and rawCharPosition

Appendix D The Parser API
For technical reasons nearly all the classes and methods in Tools.dll have to be declared public. This Appendix documents the classes, methods and data that are likely to be useful for developers. See the sources for details of other aspects of the library.

D1. The <syntax> class

The name of this class can be defined in the %parser directive as described in Appendix B. The default name syntax is used in these notes. syntax is a subclass of Tools.Parser . See the notes on Parser below for inherited members.

Constructors
	new syntax ()
	Creates a new instance of the Parser subclass syntax for its YyParser class yysyntax

	new syntax(YyParser syms)
	Creates a new instance of the Parser for the given YyParser instance. This interface is provided so that syms can be initialised beforehand, or shared between several syntax instances, which may be used in different threads. syms should be an instance of the corresponding YyParser class yysyntax.

	new syntax(YyParser syms, ErrorHandler erh)
	As above, but the given ErrorHandler is used.

The new methods of this class will be theose declared in a %declare{ section in your script

D2. The Parser class

Tools.Parser is defined in Tools.dll. It is an abstract class.

	bool m_debug
	If set to true, an LR trace is produced duting lexing, which can be read in conjunction with the output from the pg command when the –D flag is set.

	YyParser m_symbols
	The corresponding YyParser instance

	Lexer m_lexer
	The Lexer that gives the tokens for parsing.

	SYMBOL Parse (string buf)
	Parse the give string and return the resulting abstract syntax tree. The input is passed to the Lexer for analysis.

	SYMBOL Parse (StreamReader input)
	Parse the given input stream and return the resulting abstract syntax tree. The Lexer will attempt to reopen the StreamReader with the correct Encoding.

	SYMBOL Parse (CsReader inFile)
	Parse the given input stream and return the resulting abstract syntax tree. The CsReader class ignores comments.

During parsing, the only data in the Parser class that change are: m_stack, m_ungot. All other data in the Parser and related classes are immutable. The ParserStackEntry pointed at by m_stack may be updated during error recovery.
D3. The yy<syntax> class

This is a subclass of Tools.YyParser . You should not need to modify this class.
	object Action (Parser yyq, SYMBOL yysym, int yyact)
	This method will contain the code from old actions in the script. (see Appendix B). The pseudo-variable yyp is a synonym for (syntax)yyq . The returned value can be that of $$.

	IEnumerator GetEnumerator()
	Returns an enumerator for ParsingInfos.

D4. The SYMBOL class

This is defined in Tools.dll. It is returned by Parser.Parse(), and is the default base class for a %symbol .

Properties
	int Line
	The line number in the input file (see Pos below)

	object m_dollar
	The value of this SYMBOL as set in old actions using $$

	int pos
	The position of the symbol in the input file. See below

	string Pos
	A string version of the position in form “Line n, char m: ”

	int Position
	The character position in the input file (m above)

	ObjectList kids
	The child nodes of this symbol in the concrete syntax, unless the –C flag suppresses this feature.

Methods

	void ConcreteSyntaxTree()
	Displays the concrete syntax tree using the kids ObjectList.

	override string ToString()
	By default this is just yyname(). Override this if you want to display something different.

	virtual string yyname()
	The name of the SYMBOL subclass (for SYMBOL itself, this is “SYMBOL”).

D5. The error class
This is defined in Tools.dll. It is a subclass of SYMBOL. It has a subclasses: recoveredError
Properties
	
	error
	recoveredError

	SYMBOL sym
	The next symbol in the parse when the error occurred
	The instantce of the start symbol resulting from the parse. Commonly this is the abstract syntax tree, which may contain error symbols

	int state
	The state in the parse table (see section B3 for an example).
	The accept state

Method

	string ToString()
	A readable version of the above information
	Includes the value of the error handler’s counter, which by default shows the number of errors that have been recovered

Appendix E: Exceptions
Exeptions raised by the tools are of class CSToolsException. This has additional fields which can provide information about the position etc of the token or symbol that caused the error. See Appendix C, sections C7 and C8.
Note that the Message property of the Exception generally provides more details about the nature of the problem being reported.

	Error
	Phase
	Circumstances

	1
	lg
	The regular expression is ill-formed

	2
	Lexing
	The input stream contains a character not allowed by the lexer script. Parsing cannot continue.

	3
	toolcs
	Bad script

	4
	lg
	Could not open script file for reading

	5
	lg
	Could not open tokens file for writing

	6
	Lexing
	This token type has no factory provided

	7
	Lexing
	An exception occurred in a token constructor

	8
	lg
	Unknown directive

	9
	Parsing
	Fatal: no parsing information for the given symbol

	10
	Parsing
	This literal was unexpected

	11
	pg
	The symbol defined in the start directive is not in the grammar

	12
	pg
	Reduce/reduce conflict

	13
	Parsing
	Normal syntax error during parsing

	14
	Parsing
	Pop failed during reduce

	15
	pg
	Action/action or shift/action conflict

	16
	Parsing
	This symbol type has no factory provided

	17
	Parsing
	An exception occurred in a symbol constructor

	18
	pg
	The parser script lacks an accept state: no language is defined.

	19
	pg
	The parser script defines a %symbol or %node with an unknown base type

	20
	pg
	The production has incorrect syntax

	21
	pg
	%prec cannot be the first entry on the right hand side of a production

	22
	lg, pg
	EOF found in an action or class definition

	23
	lg, pg
	Syntax error during class definition

	24
	lg
	A symbol found within braces is not defined in the script and is not a Unicode category or EOF.

	25
	lg
	Bad start symbol in lexer script

	26
	lg
	%lexer directive not found in script

	27
	pg
	Could not open the tokens file for reading

	28
	pg
	Could not open the parser script file

	29
	pg
	Could not create the syntax file

	30
	pg
	%parser directive not found in script

	31
	pg
	Symbol is neither a grammar symbol nor a token

	32
	pg
	EOF in %declare directive

	33
	pg
	White space is required after precedence directive

	34
	pg
	Token expected in precedence directive

	35
	pg
	Expected > in $<type>$ construct

	36
	pg
	Illegal use of $<type>$ construct

	37
	pg
	Badly-formed $n or $$ construct

	38
	pg
	EOF in action

	39
	pg
	Bad production left-hand side

	40
	pg
	: expected to start right hand side of production

	41
	pg
	; expected at end of production

	42
	pg
	Adjacent actions in production

	43
	lg
	Unknown %encoding type

	44
	lg
	Bad %define

	45
	pg
	Some %nodes should be declared as %symbol instead

	46
	pg
	Simple action nnnn does not match symbol type sssss

	47
	lg
	Bad ResWds directive

sub

set

set

x

y

..

first

second

alt

sub

1

2

4

3

5

6

b

d

c

e

e

a

ReRange

RePlus

"_"

A-Za-z

ReStr

ReOpt

ReCat

E

E

*

E

(

E

)

E

+

E

x

x

x

1

2

3

4

0

a

b

a

b

c

b

c

..

yY

xX

Version 4.7k January 2008
1

_1114541107.unknown

_1114544506.unknown

_1114618939.unknown

_1114619421.unknown

_1114544478.unknown

_1114535924.unknown

